-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathtest.py
58 lines (39 loc) · 1.58 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import os
import torch
import torch.nn as nn
import numpy as np
from PIL import Image
from torchvision import transforms, models
device_name = "cuda:0:" if torch.cuda.is_available() else "cpu"
device = torch.device(device_name)
resnet_model = models.resnet50(pretrained=True)
for param in resnet_model.parameters():
param.requires_grad = True
n_inputs = resnet_model.fc.in_features
resnet_model.fc = nn.Sequential(nn.Linear(n_inputs, 2048),
nn.SELU(),
nn.Dropout(p=0.4),
nn.Linear(2048, 2048),
nn.SELU(),
nn.Dropout(p=0.4),
nn.Linear(2048, 4),
nn.LogSigmoid())
for name, child in resnet_model.named_children():
for name2, params in child.named_parameters():
params.requires_grad = True
resnet_model.to(device)
resnet_model.load_state_dict(torch.load('models\\bt_resnet50_model.pt'))
resnet_model.eval()
transform = transforms.Compose([transforms.Resize((512, 512)), transforms.ToTensor()])
LABELS = ['None', 'Meningioma', 'Glioma', 'Pitutary']
img_name = input("Enter path to the image: ")
if not os.path.exists(img_name):
print("File does not exits. Exiting...\n")
exit()
img = Image.open(img_name)
img = transform(img)
img = img[None, ...]
with torch.no_grad():
y_hat = resnet_model.forward(img.to(device))
predicted = torch.argmax(y_hat.data, dim=1)
print(LABELS[predicted.data],'\n')