-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtest_bnb.py
210 lines (172 loc) · 6.06 KB
/
test_bnb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
"""
Test training on BnB
"""
import json
import logging
from typing import List
import os
import sys
import numpy as np
import torch
import torch.distributed as dist
from torch.utils.data import DataLoader, SequentialSampler
from torch.utils.data.distributed import DistributedSampler
try:
from apex.parallel import DistributedDataParallel as DDP
except ImportError:
print("Can't load apex...")
from torch.nn.parallel import DistributedDataParallel as DDP
from tqdm import tqdm
from transformers import BertTokenizer
from airbert import Airbert, BERT_CONFIG_FACTORY
from utils.cli import get_parser
from utils.dataset.common import pad_packed, save_json_data
from utils.dataset import BnBFeaturesReader
from utils.dataset.bnb_dataset import BnBDataset
from airbert import Airbert
from train import get_model_input, get_mask_options, get_target
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
stream=sys.stdout,
)
logger = logging.getLogger(__name__)
def main():
# ----- #
# setup #
# ----- #
# command line parsing
parser = get_parser(training=False, bnb=True)
args = parser.parse_args()
print(args)
# create output directory
save_folder = os.path.join(args.output_dir, f"run-{args.save_name}")
if not os.path.exists(save_folder):
os.makedirs(save_folder)
# get device settings
if args.local_rank == -1:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
n_gpu = torch.cuda.device_count()
else:
# Initializes the distributed backend which will take care of synchronizing
# nodes/GPUs
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
dist.init_process_group(backend="nccl")
n_gpu = 1
# check if this is the default gpu
default_gpu = True
if args.local_rank != -1 and dist.get_rank() != 0:
default_gpu = False
if default_gpu:
logger.info(f"Playing with {n_gpu} GPUs")
# ------------ #
# data loaders #
# ------------ #
# load a dataset
tokenizer = BertTokenizer.from_pretrained(args.bert_tokenizer)
if not isinstance(tokenizer, BertTokenizer):
raise ValueError("Fix mypy issue")
features_reader = BnBFeaturesReader(args.bnb_feature)
caption_path = f"data/bnb/{args.prefix}bnb_test.json"
logger.info(f"Using captions from {caption_path}")
separators = ("then", "and", ",", ".") if args.separators else ("[SEP]",)
testset_path = f"data/bnb/{args.prefix}testset.json"
dataset = BnBDataset(
caption_path=caption_path,
testset_path=testset_path,
tokenizer=tokenizer,
skeleton_path=args.skeleton,
features_reader=features_reader,
max_instruction_length=args.max_instruction_length,
max_length=args.max_path_length,
min_length=args.min_path_length,
max_captioned=args.max_captioned,
min_captioned=args.min_captioned,
max_num_boxes=args.max_num_boxes,
num_positives=1,
num_negatives=args.num_negatives,
masked_vision=False,
masked_language=False,
training=False,
shuffler=args.shuffler,
out_listing=args.out_listing,
separators=separators,
)
logger.info("Loading val datasets")
# adjust the batch size for distributed training
batch_size = args.batch_size
if args.local_rank != -1:
batch_size = batch_size // dist.get_world_size()
if default_gpu:
logger.info(f"batch_size: {batch_size}")
if args.local_rank == -1:
sampler = SequentialSampler(dataset)
else:
sampler = DistributedSampler(dataset)
data_loader = DataLoader(
dataset,
shuffle=False,
sampler=sampler,
batch_size=batch_size,
num_workers=args.num_workers,
pin_memory=True,
)
# ----- #
# model #
# ----- #
config = BERT_CONFIG_FACTORY[args.model_name].from_json_file(args.config_file)
config.cat_highlight = args.cat_highlight # type: ignore
config.no_ranking = False # type: ignore
config.masked_language = False # type: ignore
config.masked_vision = False # type: ignore
config.model_name = args.model_name
model = Airbert.from_pretrained(args.from_pretrained, config, default_gpu=True)
logger.info(f"number of parameters: {sum(p.numel() for p in model.parameters()):,}")
model.to(device)
if args.local_rank != -1:
model = DDP(model, delay_allreduce=True)
if default_gpu:
logger.info("using distributed data parallel")
elif n_gpu > 1:
model = torch.nn.DataParallel(model)
if default_gpu:
logger.info("using data parallel")
# ---------- #
# evaluation #
# ---------- #
with torch.no_grad():
all_scores = eval_epoch(model, data_loader)
# save scores
scores_path = os.path.join(save_folder, f"{args.prefix}_scores.json")
save_json_data(all_scores, scores_path)
logger.info(f"saving scores: {scores_path}")
def eval_epoch(model, data_loader):
device = next(model.parameters()).device
model.eval()
all_scores = {}
counter = 0
for batch in tqdm(data_loader):
# load batch on gpu
batch = tuple(t.cuda(device=device, non_blocking=True) for t in batch)
listing_ids = get_listing_ids(batch)
# get the model output
output = model(*get_model_input(batch))
opt_mask = get_mask_options(batch)
instr_tokens = get_instr_tokens(batch)
target = get_target(batch)
vil_logit = pad_packed(output["ranking"].squeeze(1), opt_mask)
all_scores[listing_ids[0]] = {
"logit": vil_logit[0].tolist(),
"target": target[0].tolist(),
"instr": instr_tokens[0].tolist(),
}
return all_scores
def get_listing_ids(batch) -> List[str]:
instr_ids = batch[12]
return [str(int(item)) for item in instr_ids]
def get_instr_tokens(batch):
return batch[6]
if __name__ == "__main__":
main()