-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
345 lines (297 loc) · 16.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
import os
import sys
import time
import logging
import torch
import utils as dutils
import argparse
import numpy as np
import torch.utils
from genotypes import Genotype_nested
import genotypes
import torch.nn as nn
import torchvision.datasets as dset
import torch.backends.cudnn as cudnn
from model import NetworkCIFAR, NetworkImageNet
from thop import profile
from torch.utils.tensorboard import SummaryWriter
parser = argparse.ArgumentParser("cifar")
parser.add_argument('--data', type=str, default=os.path.join(os.path.expanduser('~'),'work/dataset/cifar/'), help='location of the data corpus')
parser.add_argument('--dataset', type=str, default='cifar10', help='cifar10 or cifar100 or imagenet or coco_captions or coco_detection for training')
parser.add_argument('--batch_size', type=int, default=128, help='batch size')
parser.add_argument('--learning_rate', type=float, default=0.025, help='init learning rate')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('--momentum', type=float, default=0.9, help='momentum')
parser.add_argument('--weight_decay', type=float, default=3e-4, help='weight decay')
parser.add_argument('--report_freq', type=int, default=50, help='report frequency')
parser.add_argument('--gpu', type=int, default=0, help='gpu device id')
parser.add_argument('--multi-gpus', action='store_true', default=False, help='use multi gpus')
parser.add_argument('--parse_method', type=str, default='threshold_sparse', help='experiment name')
parser.add_argument('--epochs', type=int, default=600, help='num of training epochs')
parser.add_argument('--init_channels', type=int, default=64, help='num of init channels')
parser.add_argument('--layers', type=int, default=8, help='total number of layers')
parser.add_argument('--model_path', type=str, default='saved_models', help='path to save the model')
parser.add_argument('--auxiliary', action='store_true', default=False, help='use auxiliary tower')
parser.add_argument('--auxiliary_weight', type=float, default=0.4, help='weight for auxiliary loss')
parser.add_argument('--cutout', action='store_true', default=False, help='use cutout')
parser.add_argument('--cutout_length', type=int, default=16, help='cutout length')
parser.add_argument('--label_smooth', type=float, default=0.1, help='label smoothing')
parser.add_argument('--auto_aug', action='store_true', default=False, help='use auto augmentation')
parser.add_argument('--drop_path_prob', type=float, default=0.2, help='drop path probability')
parser.add_argument('--save', type=str, default='EXP', help='experiment name')
parser.add_argument('--seed', type=int, default=0, help='random seed')
parser.add_argument('--arch', type=str, default='nestedDARTS_cell_threshold_sparse_0.85', help='which architecture to use (whole string or txt file location)')
parser.add_argument('--grad_clip', type=float, default=5, help='gradient clipping')
parser.add_argument('--resume', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)')
parser.add_argument('--amp', action='store_true', default=False, help="Train using Automatic Mixed Precision.")
parser.add_argument('--no_log', action='store_true', help="Do not record training log.")
class CrossEntropyLabelSmooth(nn.Module):
"Smooth CrossEntropy loss for training on ImageNet."
def __init__(self, num_classes, epsilon):
super(CrossEntropyLabelSmooth, self).__init__()
self.num_classes = num_classes
self.epsilon = epsilon
self.logsoftmax = nn.LogSoftmax(dim=1)
def forward(self, inputs, targets):
log_probs = self.logsoftmax(inputs)
targets = torch.zeros_like(log_probs).scatter_(1, targets.unsqueeze(1), 1)
targets = (1 - self.epsilon) * targets + self.epsilon / self.num_classes
loss = (-targets * log_probs).mean(0).sum()
return loss
class TrainArgs:
def __init__(self, arch, epochs, dataset, init_channels, layers, gpu, no_log=True) -> None:
self.arch = arch
self.dataset = dataset
self.epochs = epochs
self.init_channels = init_channels
self.layers = layers
self.no_log = no_log
self.data = os.path.join(os.path.expanduser('~'),'work/dataset/cifar/')
self.batch_size = 256
self.learning_rate = 0.025
self.start_epoch = 0
self.momentum = 0.9
self.weight_decay = 3e-4
self.report_freq = 100
self.gpu = gpu
self.multi_gpus = False
self.parse_method = "threshold_sparse"
self.model_path = "saved_models"
self.auxiliary = False
self.auxiliary_weight = 0.4
self.cutout = False
self.cutout_length = 16
self.label_smooth = 0.1
self.auto_aug = False
self.drop_path_prob = 0.2
self.save = 'EXP'
self.seed = 0
self.grad_clip = 5
self.resume = ''
self.amp = True
class TrainNetwork(object):
"""The main train network"""
def __init__(self, args):
super(TrainNetwork, self).__init__()
self.args = args
self.dur_time = 0
self._init_log()
self._init_device()
self._init_data_queue()
self._init_model()
def _init_log(self):
if not self.args.no_log:
self.args.save = './logs/eval/' + self.args.arch + '/' + 'cifar10' + '/eval-{}-{}'.format(self.args.save, time.strftime('%Y%m%d-%H%M'))
dutils.create_exp_dir(self.args.save, scripts_to_save=None)
log_format = '%(asctime)s %(message)s'
logging.basicConfig(stream=sys.stdout, level=logging.INFO,
format=log_format, datefmt='%m/%d %I:%M:%S %p')
self.logger = logging.getLogger('Architecture Training')
if not self.args.no_log:
fh = logging.FileHandler(os.path.join(self.args.save, 'log.txt'))
fh.setFormatter(logging.Formatter(log_format))
self.logger.addHandler(fh)
self.writer = SummaryWriter(f'./runs/eval/eval-{args.dataset}-{args.layers}layers-{time.strftime("%Y%m%d-%H%M")}')
def _init_device(self):
if not torch.cuda.is_available():
self.logger.info('no gpu device available')
sys.exit(1)
np.random.seed(self.args.seed)
self.device_id = self.args.gpu
self.device = torch.device('cuda:{}'.format(0 if self.args.multi_gpus else self.device_id))
cudnn.benchmark = True
torch.manual_seed(self.args.seed)
cudnn.enabled = True
torch.cuda.manual_seed(self.args.seed)
logging.info('gpu device = %d' % self.args.gpu)
logging.info("args = %s", self.args)
def _init_data_queue(self):
if self.args.dataset == 'cifar10':
train_transform, valid_transform = dutils._data_transforms_cifar(self.args)
train_data = dset.CIFAR10(root=self.args.data, train=True, download=True, transform=train_transform)
valid_data = dset.CIFAR10(root=self.args.data, train=False, download=True, transform=valid_transform)
self.num_classes = 10
elif self.args.dataset == 'cifar100':
train_transform, valid_transform = dutils._data_transforms_cifar(self.args)
train_data = dset.CIFAR100(root=self.args.data, train=True, download=True, transform=train_transform)
valid_data = dset.CIFAR100(root=self.args.data, train=False, download=True, transform=valid_transform)
self.num_classes = 100
elif self.args.dataset == 'imagenet':
train_transform, valid_transform = dutils._data_transforms_imagenet(self.args)
train_data = dset.ImageNet(root=self.args.data, split='train', transform=train_transform)
valid_data = dset.ImageNet(root=self.args.data, split='val', transform=valid_transform)
self.num_classes = 1000
self.train_queue = torch.utils.data.DataLoader(
train_data, batch_size=self.args.batch_size, shuffle=True, pin_memory=True, num_workers=4)
self.valid_queue = torch.utils.data.DataLoader(
valid_data, batch_size=self.args.batch_size, shuffle=False, pin_memory=True, num_workers=4)
def _init_model(self):
if "baseline" in self.args.arch:
self.genotype = eval(f"genotypes.{self.args.arch.split('_')[1]}")
elif isinstance(self.args.arch, Genotype_nested):
self.genotype = self.args.arch
else:
with open(f'genotypes/{self.args.arch}.txt', 'r') as g:
self.genotype = eval(g.read())
if self.args.dataset == "imagenet":
model = NetworkImageNet(self.args.init_channels, self.num_classes, self.args.layers, self.args.auxiliary, self.genotype, self.args.parse_method)
inputs_r = (torch.randn(1, 3, 224, 224),)
else:
model = NetworkCIFAR(self.args.init_channels, self.num_classes, self.args.layers, self.args.auxiliary, self.genotype, self.args.parse_method)
inputs_r = (torch.randn(1, 3, 224, 224),)
flops, params = profile(model, inputs=inputs_r, verbose=False)
self.logger.info('flops = %fM', flops / 1e6)
self.logger.info('param size = %fM', params / 1e6)
# Try move model to multi gpus
if torch.cuda.device_count() > 1 and self.args.multi_gpus:
self.logger.info('use: %d gpus', torch.cuda.device_count())
model = nn.DataParallel(model)
else:
self.logger.info('gpu device = %d' % self.device_id)
torch.cuda.set_device(self.device_id)
self.model = model.to(self.device)
criterion = nn.CrossEntropyLoss()
criterion_smooth = CrossEntropyLabelSmooth(self.num_classes, self.args.label_smooth)
self.criterion = criterion.to(self.device)
self.criterion_train = criterion_smooth.to(self.device) if self.args.dataset == "imagenet" else self.criterion
self.optimizer = torch.optim.SGD(
model.parameters(),
self.args.learning_rate,
momentum=self.args.momentum,
weight_decay=self.args.weight_decay
)
self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.amp)
self.best_acc_top1 = 0
# optionally resume from a checkpoint
if self.args.resume:
if os.path.isfile(self.args.resume):
print("=> loading checkpoint {}".format(self.args.resume))
checkpoint = torch.load(self.args.resume, map_location=self.device)
self.dur_time = checkpoint['dur_time']
self.args.start_epoch = checkpoint['epoch']
self.best_acc_top1 = checkpoint['best_acc_top1']
self.args.drop_path_prob = checkpoint['drop_path_prob']
self.model.load_state_dict(checkpoint['state_dict'])
self.optimizer.load_state_dict(checkpoint['optimizer'])
self.scaler.load_state_dict(checkpoint['scaler'])
print("=> loaded checkpoint '{}' (epoch {})".format(self.args.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(self.args.resume))
last_epoch = -1 if self.args.start_epoch == 0 else self.args.start_epoch
self.scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(self.optimizer, float(self.args.epochs), eta_min=0, last_epoch=last_epoch)
# reload the scheduler if possible
if self.args.resume and os.path.isfile(self.args.resume):
checkpoint = torch.load(self.args.resume)
self.scheduler.load_state_dict(checkpoint['scheduler'])
def run(self):
self.logger.info('args = %s', self.args)
run_start = time.time()
for epoch in range(self.args.start_epoch, self.args.epochs):
lr = self.scheduler.get_lr()[0]
self.logger.info('epoch % d / %d lr %e', epoch, self.args.epochs, lr)
self.model.drop_path_prob = self.args.drop_path_prob * epoch / self.args.epochs
train_acc, train_obj = self.train()
self.logger.info('train loss %e, train acc %f', train_obj, train_acc)
valid_acc_top1, valid_acc_top5, valid_obj = self.infer()
self.logger.info('valid loss %e, top1 valid acc %f top5 valid acc %f',
valid_obj, valid_acc_top1, valid_acc_top5)
self.logger.info('best valid acc %f', self.best_acc_top1)
self.scheduler.step()
is_best = False
if valid_acc_top1 > self.best_acc_top1:
self.best_acc_top1 = valid_acc_top1
is_best = True
if not self.args.no_log:
self.writer.add_scalar('lr', lr, global_step=epoch)
self.writer.add_scalar('valid acc top1', valid_acc_top1, global_step=epoch)
self.writer.add_scalar('valid acc top5', valid_acc_top5, global_step=epoch)
self.writer.add_scalar('train acc top1', train_acc, global_step=epoch)
dutils.save_checkpoint({
'epoch': epoch+1,
'dur_time': self.dur_time + time.time() - run_start,
'state_dict': self.model.state_dict(),
'drop_path_prob': self.args.drop_path_prob,
'best_acc_top1': self.best_acc_top1,
'optimizer': self.optimizer.state_dict(),
'scaler': self.scaler.state_dict(),
'scheduler': self.scheduler.state_dict()
}, is_best, self.args.save)
duration_time = dutils.calc_time(self.dur_time + time.time() - run_start)
self.logger.info('train epoches %d, best_acc_top1 %f, dur_time %s',
self.args.epochs, self.best_acc_top1, duration_time)
if not self.args.no_log:
self.writer.close()
return {'type': "Eval", 'val_acc': self.best_acc_top1, "model": self.args.genotype, "dataset": self.args.dataset, "duration_time": duration_time}
def train(self):
objs = dutils.AvgrageMeter()
top1 = dutils.AvgrageMeter()
top5 = dutils.AvgrageMeter()
self.model.train()
for step, (input, target) in enumerate(self.train_queue):
input = input.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
self.optimizer.zero_grad(set_to_none=True)
with torch.cuda.amp.autocast(enabled=self.args.amp):
logits, logits_aux = self.model(input)
loss = self.criterion_train(logits, target)
if self.args.auxiliary:
loss_aux = self.criterion_train(logits_aux, target)
loss += self.args.auxiliary_weight*loss_aux
self.scaler.scale(loss).backward()
self.scaler.unscale_(self.optimizer)
nn.utils.clip_grad_norm_(self.model.parameters(), self.args.grad_clip)
self.scaler.step(self.optimizer)
self.scaler.update()
prec1, prec5 = dutils.accuracy(logits, target, topk=(1, 5))
n = input.size(0)
objs.update(loss.item(), n)
top1.update(prec1.item(), n)
top5.update(prec5.item(), n)
if step % self.args.report_freq == 0:
self.logger.info('train %03d %e %f %f', step, objs.avg, top1.avg, top5.avg)
return top1.avg, objs.avg
def infer(self):
objs = dutils.AvgrageMeter()
top1 = dutils.AvgrageMeter()
top5 = dutils.AvgrageMeter()
self.model.eval()
with torch.no_grad():
for step, (input, target) in enumerate(self.valid_queue):
input = input.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
with torch.cuda.amp.autocast(enabled=self.args.amp):
logits, _ = self.model(input)
loss = self.criterion(logits, target)
prec1, prec5 = dutils.accuracy(logits, target, topk=(1, 5))
n = input.size(0)
objs.update(loss.item(), n)
top1.update(prec1.item(), n)
top5.update(prec5.item(), n)
if step % self.args.report_freq == 0:
self.logger.info('valid %03d %e %f %f', step, objs.avg, top1.avg, top5.avg)
return top1.avg, top5.avg, objs.avg
if __name__ == '__main__':
args = parser.parse_args()
train_network = TrainNetwork(args)
train_network.run()