-
Notifications
You must be signed in to change notification settings - Fork 67
/
Copy pathlstm.py
executable file
·425 lines (349 loc) · 14.1 KB
/
lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
# coding: utf-8
# In[2]:
# In[1]:
import gensim
from gensim.models import word2vec
import pickle
import numpy as np
import numpy
import pickle
from random import *
import theano.tensor as T
def _p(pp, name):
return '%s_%s' % (pp, name)
import re
from nltk.corpus import stopwords
import scipy.stats as meas
from gensim.models import word2vec
from collections import OrderedDict
import pickle as pkl
import random
import sys
import time
import numpy
import theano
from theano import config
import theano.tensor as tensor
from theano.sandbox.rng_mrg import MRG_RandomStreams as RandomStreams
from sentences import *
def numpy_floatX(data):
return numpy.asarray(data, dtype=config.floatX)
def zipp(params, tparams):
for kk, vv in params.iteritems():
tparams[kk].set_value(vv)
def unzip(zipped):
new_params = OrderedDict()
for kk, vv in zipped.iteritems():
new_params[kk] = vv.get_value()
return new_params
def init_tparams(params):
tparams = OrderedDict()
for kk, pp in params.iteritems():
tparams[kk] = theano.shared(params[kk], name=kk)
return tparams
def get_layer(name):
fns = layers[name]
return fns
# In[2]:
def genm(mu,sigma,n1,n2):
return np.random.normal(mu,sigma,(n1,n2))
def getlayerx(d,pref,n,nin):
mu=0.0
sigma=0.2
U = np.concatenate([genm(mu,sigma,n,n),genm(mu,sigma,n,n),genm(mu,sigma,n,n),genm(mu,sigma,n,n)])/np.sqrt(n)
U=np.array(U,dtype=np.float32)
W =np.concatenate([genm(mu,sigma,n,nin),genm(mu,sigma,n,nin),genm(mu,sigma,n,nin),genm(mu,sigma,n,nin)])/np.sqrt(np.sqrt(n*nin))
W=np.array(W,dtype=np.float32)
d[_p(pref, 'U')] = U
#b = numpy.zeros((n * 300,))+1.5
b = np.random.uniform(-0.5,0.5,size=(4*n,))
b[n:n*2]=1.5
d[_p(pref, 'W')] = W
d[_p(pref, 'b')] = b.astype(config.floatX)
return d
def creatrnnx():
newp=OrderedDict()
#print ("Creating neural network")
newp=getlayerx(newp,'1lstm1',50,300)
#newp=getlayerx(newp,'1lstm2',30,50)
#newp=getlayerx(newp,'1lstm3',40,60)
#newp=getlayerx(newp,'1lstm4',6)
#newp=getlayerx(newp,'1lstm5',4)
newp=getlayerx(newp,'2lstm1',50,300)
#newp=getlayerx(newp,'2lstm2',20,10)
#newp=getlayerx(newp,'2lstm3',10,20)
#newp=getlayerx(newp,'2lstm4',6)
#newp=getlayerx(newp,'2lstm5',4)
#newp=getlayerx(newp,'2lstm3',4)
#newp['2lstm1']=newp['1lstm1']
#newp['2lstm2']=newp['1lstm2']
#newp['2lstm3']=newp['1lstm3']
return newp
# In[3]:
def dropout_layer(state_before, use_noise, rrng,rate):
proj = tensor.switch(use_noise,
(state_before *rrng),
state_before * (1-rate))
return proj
def getpl2(prevlayer,pre,mymask,used,rrng,size,tnewp):
proj = lstm_layer2(tnewp, prevlayer, options,
prefix=pre,
mask=mymask,nhd=size)
if used:
print "Added dropout"
proj = dropout_layer(proj, use_noise, rrng,0.5)
return proj
def lstm_layer2(tparams, state_below, options, prefix='lstm', mask=None,nhd=None):
nsteps = state_below.shape[0]
if state_below.ndim == 3:
n_samples = state_below.shape[1]
else:
n_samples = 1
assert mask is not None
def _slice(_x, n, dim):
if _x.ndim == 3:
return _x[:, :, n * dim:(n + 1) * dim]
return _x[:, n * dim:(n + 1) * dim]
def _step(m_, x_, h_, c_):
preact = tensor.dot(h_, tparams[_p(prefix, 'U')].T)
preact += x_
preact += tparams[_p(prefix, 'b')]
i = tensor.nnet.sigmoid(_slice(preact, 0, nhd))
f = tensor.nnet.sigmoid(_slice(preact, 1, nhd))
o = tensor.nnet.sigmoid(_slice(preact, 2, nhd))
c = tensor.tanh(_slice(preact, 3, nhd))
c = f * c_ + i * c
c = m_[:, None] * c + (1. - m_)[:, None] * c_
h = o * tensor.tanh(c)
h = m_[:, None] * h + (1. - m_)[:, None] * h_
return [h, c]
state_below = (tensor.dot(state_below, tparams[_p(prefix, 'W')].T) +
tparams[_p(prefix, 'b')].T)
#print "hvals"
dim_proj = nhd
[hvals,yvals], updates = theano.scan(_step,
sequences=[mask, state_below],
outputs_info=[tensor.alloc(numpy_floatX(0.),
n_samples,
dim_proj),
tensor.alloc(numpy_floatX(0.),
n_samples,
dim_proj)],
name=_p(prefix, '_layers'),
n_steps=nsteps)
return hvals
def adadelta(lr, tparams, grads, emb11,mask11,emb21,mask21,y, cost):
zipped_grads = [theano.shared(p.get_value() * numpy_floatX(0.),
name='%s_grad' % k)
for k, p in tparams.iteritems()]
running_up2 = [theano.shared(p.get_value() * numpy_floatX(0.),
name='%s_rup2' % k)
for k, p in tparams.iteritems()]
running_grads2 = [theano.shared(p.get_value() * numpy_floatX(0.),
name='%s_rgrad2' % k)
for k, p in tparams.iteritems()]
zgup = [(zg, g) for zg, g in zip(zipped_grads, grads)]
rg2up = [(rg2, (0.95 * rg2 + 0.05* (g ** 2)))
for rg2, g in zip(running_grads2, grads)]
f_grad_shared = theano.function([emb11,mask11,emb21,mask21,y], cost, updates=zgup + rg2up,
name='adadelta_f_grad_shared')
updir = [-tensor.sqrt(ru2 + 1e-6) / tensor.sqrt(rg2 + 1e-6) * zg
for zg, ru2, rg2 in zip(zipped_grads,
running_up2,
running_grads2)]
ru2up = [(ru2, (0.95 * ru2 + 0.05 * (ud ** 2)))
for ru2, ud in zip(running_up2,updir)]
param_up = [(p, p + ud) for p, ud in zip(tparams.values(), updir)]
f_update = theano.function([lr], [], updates=ru2up + param_up,
on_unused_input='ignore',
name='adadelta_f_update')
return f_grad_shared, f_update
def sgd(lr, tparams, grads, emb11,mask11,emb21,mask21,y, cost):
gshared = [theano.shared(p.get_value() * 0., name='%s_grad' % k)
for k, p in tparams.iteritems()]
gsup = [(gs, g) for gs, g in zip(gshared, grads)]
f_grad_shared = theano.function([emb11,mask11,emb21,mask21,y], cost, updates=gsup,
name='sgd_f_grad_shared')
pup = [(p, p - lr * g) for p, g in zip(tparams.values(), gshared)]
f_update = theano.function([lr], [], updates=pup,
name='sgd_f_update')
return f_grad_shared, f_update
def rmsprop(lr, tparams, grads, emb11,mask11,emb21,mask21,y, cost):
zipped_grads = [theano.shared(p.get_value() * numpy_floatX(0.),
name='%s_grad' % k)
for k, p in tparams.iteritems()]
running_grads = [theano.shared(p.get_value() * numpy_floatX(0.),
name='%s_rgrad' % k)
for k, p in tparams.iteritems()]
running_grads2 = [theano.shared(p.get_value() * numpy_floatX(0.),
name='%s_rgrad2' % k)
for k, p in tparams.iteritems()]
zgup = [(zg, g) for zg, g in zip(zipped_grads, grads)]
rgup = [(rg, 0.95 * rg + 0.05 * g) for rg, g in zip(running_grads, grads)]
rg2up = [(rg2, 0.95 * rg2 + 0.05 * (g ** 2))
for rg2, g in zip(running_grads2, grads)]
f_grad_shared = theano.function([emb11,mask11,emb21,mask21,y], cost,
updates=zgup + rgup + rg2up,
name='rmsprop_f_grad_shared')
updir = [theano.shared(p.get_value() * numpy_floatX(0.),
name='%s_updir' % k)
for k, p in tparams.iteritems()]
updir_new = [(ud, 0.9 * ud - 1e-4 * zg / tensor.sqrt(rg2 - rg ** 2 + 1e-4))
for ud, zg, rg, rg2 in zip(updir, zipped_grads, running_grads,
running_grads2)]
param_up = [(p, p + udn[1])
for p, udn in zip(tparams.values(), updir_new)]
f_update = theano.function([lr], [], updates=updir_new + param_up,
on_unused_input='ignore',
name='rmsprop_f_update')
return f_grad_shared, f_update
class lstm():
def __init__(self,nam,load=False,training=False):
newp=creatrnnx()
for i in newp.keys():
if i[0]=='1':
newp['2'+i[1:]]=newp[i]
y = tensor.vector('y', dtype=config.floatX)
mask11 = tensor.matrix('mask11', dtype=config.floatX)
mask21 = tensor.matrix('mask21', dtype=config.floatX)
emb11=theano.tensor.ftensor3('emb11')
emb21=theano.tensor.ftensor3('emb21')
if load==True:
newp=pickle.load(open(nam,'rb'))
tnewp=init_tparams(newp)
trng = RandomStreams(1234)
use_noise = theano.shared(numpy_floatX(0.))
rate=0.5
rrng=trng.binomial(emb11.shape,p=1-rate, n=1,dtype=emb11.dtype)
proj11=getpl2(emb11,'1lstm1',mask11,False,rrng,50,tnewp)[-1]
proj21=getpl2(emb21,'2lstm1',mask21,False,rrng,50,tnewp)[-1]
dif=(proj21-proj11).norm(L=1,axis=1)
s2=T.exp(-dif)
sim=T.clip(s2,1e-7,1.0-1e-7)
lr = tensor.scalar(name='lr')
ys=T.clip((y-1.0)/4.0,1e-7,1.0-1e-7)
cost=T.mean((sim - ys) ** 2)
ns=emb11.shape[1]
self.f2sim=theano.function([emb11,mask11,emb21,mask21],sim,allow_input_downcast=True)
self.f_proj11=theano.function([emb11,mask11],proj11,allow_input_downcast=True)
self.f_cost=theano.function([emb11,mask11,emb21,mask21,y],cost,allow_input_downcast=True)
if training==True:
gradi = tensor.grad(cost, wrt=tnewp.values())#/bts
grads=[]
l=len(gradi)
for i in range(0,l/2):
gravg=(gradi[i]+gradi[i+l/2])/(4.0)
#print i,i+9
grads.append(gravg)
for i in range(0,len(tnewp.keys())/2):
grads.append(grads[i])
self.f_grad_shared, self.f_update = adadelta(lr, tnewp, grads,emb11,mask11,emb21,mask21,y, cost)
def train_lstm(self,train,max_epochs):
print "Training"
crer=[]
cr=1.6
freq=0
batchsize=32
dfreq=40#display frequency
valfreq=800# Validation frequency
lrate=0.0001
precision=2
for eidx in xrange(0,max_epochs):
sta=time.time()
#print self.chkterr2(test)
num=len(train)
nd=eidx
sta=time.time()
print 'Epoch',eidx
rnd=sample(xrange(len(train)),len(train))
for i in range(0,num,batchsize):
q=[]
x=i+batchsize
if x>num:
x=num
for z in range(i,x):
q.append(train[rnd[z]])
#q=train[i:i+32]
#shuffle(q)
x1,mas1,x2,mas2,y2=prepare_data(q)
ls=[]
ls2=[]
freq+=1
use_noise.set_value(1.)
for j in range(0,len(x1)):
ls.append(embed(x1[j]))
ls2.append(embed(x2[j]))
trconv=np.dstack(ls)
trconv2=np.dstack(ls2)
emb2=np.swapaxes(trconv2,1,2)
emb1=np.swapaxes(trconv,1,2)
cst=self.f_grad_shared(emb2, mas2, emb1,mas1,y2)
s=self.f_update(lrate)
#s=f_update(lrate)
if np.mod(freq,dfreq)==0:
print 'Epoch ', eidx, 'Update ', freq, 'Cost ', cst
sto=time.time()
print "epoch took:",sto-sta
def chkterr2(self,mydata):
count=[]
num=len(mydata)
px=[]
yx=[]
use_noise.set_value(0.)
for i in range(0,num,256):
q=[]
x=i+256
if x>num:
x=num
for j in range(i,x):
q.append(mydata[j])
x1,mas1,x2,mas2,y2=prepare_data(q)
ls=[]
ls2=[]
for j in range(0,len(q)):
ls.append(embed(x1[j]))
ls2.append(embed(x2[j]))
trconv=np.dstack(ls)
trconv2=np.dstack(ls2)
emb2=np.swapaxes(trconv2,1,2)
emb1=np.swapaxes(trconv,1,2)
pred=(self.f2sim(emb1,mas1,emb2,mas2))*4.0+1.0
#dm1=np.ones(mas1.shape,dtype=np.float32)
#dm2=np.ones(mas2.shape,dtype=np.float32)
#corr=f_cost(emb1,mas1,emb2,mas2,y2)
for z in range(0,len(q)):
yx.append(y2[z])
px.append(pred[z])
#count.append(corr)
px=np.array(px)
yx=np.array(yx)
#print "average error= "+str(np.mean(acc))
return np.mean(np.square(px-yx)),meas.pearsonr(px,yx)[0],meas.spearmanr(yx,px)[0]
def predict_similarity(self,sa,sb):
q=[[sa,sb,0]]
x1,mas1,x2,mas2,y2=prepare_data(q)
ls=[]
ls2=[]
use_noise.set_value(0.)
for j in range(0,len(x1)):
ls.append(embed(x1[j]))
ls2.append(embed(x2[j]))
trconv=np.dstack(ls)
trconv2=np.dstack(ls2)
emb2=np.swapaxes(trconv2,1,2)
emb1=np.swapaxes(trconv,1,2)
return self.f2sim(emb1,mas1,emb2,mas2)
d2=pickle.load(open("synsem.p",'rb'))
dtr=pickle.load(open("dwords.p",'rb'))
#d2=dtr
#model=pickle.load(open("Semevalembed.p","rb"))
# In[9]:
prefix='lstm'
noise_std=0.
use_noise = theano.shared(numpy_floatX(0.))
flg=1
cachedStopWords=stopwords.words("english")
training=False #Loads best saved model if False
Syn_aug=True # If true, performs better on Test dataset but longer training time
options=locals().copy()
# In[ ]: