-
Notifications
You must be signed in to change notification settings - Fork 182
/
head_detection_demo.py
88 lines (76 loc) · 2.83 KB
/
head_detection_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
from __future__ import division
import os
import torch as t
from src.config import opt
from src.head_detector_vgg16 import Head_Detector_VGG16
from trainer import Head_Detector_Trainer
from PIL import Image
import numpy as np
from data.dataset import preprocess
import matplotlib.pyplot as plt
import src.array_tool as at
from src.vis_tool import visdom_bbox
import argparse
import src.utils as utils
from src.config import opt
import time
SAVE_FLAG = 0
THRESH = 0.01
IM_RESIZE = False
def read_img(path):
f = Image.open(path)
if IM_RESIZE:
f = f.resize((640,480), Image.ANTIALIAS)
f.convert('RGB')
img_raw = np.asarray(f, dtype=np.uint8)
img_raw_final = img_raw.copy()
img = np.asarray(f, dtype=np.float32)
_, H, W = img.shape
img = img.transpose((2,0,1))
img = preprocess(img)
_, o_H, o_W = img.shape
scale = o_H / H
return img, img_raw_final, scale
def detect(img_path, model_path):
file_id = utils.get_file_id(img_path)
img, img_raw, scale = read_img(img_path)
head_detector = Head_Detector_VGG16(ratios=[1], anchor_scales=[2,4])
trainer = Head_Detector_Trainer(head_detector).cuda()
trainer.load(model_path)
img = at.totensor(img)
img = img[None, : ,: ,:]
img = img.cuda().float()
st = time.time()
pred_bboxes_, _ = head_detector.predict(img, scale, mode='evaluate', thresh=THRESH)
et = time.time()
tt = et - st
print ("[INFO] Head detection over. Time taken: {:.4f} s".format(tt))
for i in range(pred_bboxes_.shape[0]):
ymin, xmin, ymax, xmax = pred_bboxes_[i,:]
utils.draw_bounding_box_on_image_array(img_raw,ymin, xmin, ymax, xmax)
plt.axis('off')
plt.imshow(img_raw)
if SAVE_FLAG == 1:
plt.savefig(os.path.join(opt.test_output_path, file_id+'.png'), bbox_inches='tight', pad_inches=0)
else:
plt.show()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--img_path", type=str, help="test image path")
parser.add_argument("--model_path", type=str, default='./checkpoints/sess:2/head_detector08120858_0.682282441835')
args = parser.parse_args()
detect(args.img_path, args.model_path)
# model_path = './checkpoints/sess:2/head_detector08120858_0.682282441835'
# test_data_list_path = os.path.join(opt.data_root_path, 'brainwash_test.idl')
# test_data_list = utils.get_phase_data_list(test_data_list_path)
# data_list = []
# save_idx = 0
# with open(test_data_list_path, 'rb') as fp:
# for line in fp.readlines():
# if ":" not in line:
# img_path, _ = line.split(";")
# else:
# img_path, _ = line.split(":")
# src_path = os.path.join(opt.data_root_path, img_path.replace('"',''))
# detect(src_path, model_path, save_idx)
# save_idx += 1