-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathcoactivation.py
62 lines (49 loc) · 2.32 KB
/
coactivation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
from neurosynth.analysis.meta import MetaAnalysis
import nibabel as nib
import numpy as np
from copy import deepcopy
def mask_level(img, level):
""" Mask a specific level in a nifti image """
img = deepcopy(img)
data = img.get_data()
data[:] = np.round(data)
data[data != level] = 0
data[data == level] = 1
return img
def coactivation_contrast(dataset, infile, regions=None, target_thresh=0.05,
other_thresh=0.01, q=0.01, contrast=True):
""" Performs meta-analyses to contrast co-activation in a target region vs
co-activation of other regions. Contrasts every region in "regions" vs
the other regions in "regions"
dataset: Neurosynth dataset
infile: Nifti file with masks as levels
regions: which regions in image to contrast
target_thresh: activaton threshold for retrieving ids for target region
other_thresh: activation threshold for ids in other regions
- This should be proportionally lower than target thresh since
multiple regions are being contrasted to one, and thus should de-weighed
stat: which image to return from meta-analyis. Default is usually correct
returns: a list of nifti images for each contrast performed of length = len(regions) """
if isinstance(infile, str):
image = nib.load(infile)
else:
image = infile
affine = image.get_affine()
stat="association-test_z_FDR_%s" % str(q)
if regions == None:
regions = np.arange(1, image.get_data().max() + 1)
meta_analyses = []
for reg in regions:
if contrast is True:
other_ids = [dataset.get_studies(mask=mask_level(image, a), activation_threshold=other_thresh)
for a in regions if a != reg]
joined_ids = set()
for ids in other_ids:
joined_ids = joined_ids | set(ids)
joined_ids = list(joined_ids)
else:
joined_ids = None
reg_ids = dataset.get_studies(mask=mask_level(image, reg), activation_threshold=target_thresh)
meta_analyses.append(MetaAnalysis(dataset, reg_ids, ids2=joined_ids, q=q))
return [nib.nifti1.Nifti1Image(dataset.masker.unmask(
ma.images[stat]), affine, dataset.masker.get_header()) for ma in meta_analyses]