This repository has been archived by the owner on Jul 18, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsolution.tex
254 lines (210 loc) · 11.9 KB
/
solution.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
\documentclass[12pt, a4paper]{article}
\edef\restoreparindent{\parindent=\the\parindent\relax}
\usepackage{mathtools}
\usepackage{enumitem}
\usepackage{fancyhdr}
\usepackage{float}
\usepackage[top=25mm, right=25mm, bottom=25mm, left=25mm]{geometry}
\usepackage{microtype}
\usepackage{parskip}
\restoreparindent
\pagestyle{fancy}
\fancyhead[L]{COM4515 Network Performance Analysis}
\fancyhead[R]{Registration No: 160203853}
\setlength{\headheight}{15pt}
\newcommand\numberthis{\addtocounter{equation}{1}\tag{\theequation}}
\begin{document}
\section*{Question 1}
\textbf{1. (a) (i)}
\begin{itemize}
\item \(\lambda\) is the arrival rate of the packets / customers / etc. per unit of time
\item \(\mu\) is the service rate of the packets / customers / etc. per unit of time
\item \(\rho < 1\) to achieve steady state
\end{itemize}
\vspace{1cm}
\noindent \textbf{1. (a) (ii)}
\begin{align*}
\sum_{k=0}^{\infty} P_k &= 1 \\
\sum_{k=0}^{m-1} P_0\left(\frac{(m\rho)^k}{k!}\right) +
\sum_{k=m}^{\infty} P_0\left(\frac{m^m\rho^k}{m!}\right) &= 1 \\
P_0 \left[\sum_{k=0}^{m-1} \frac{(m\rho)^k}{k!} + \frac{m^m}{m!}\sum_{k=m}^{\infty} \rho^k \right] &= 1 \\
P_0 \left[\sum_{k=0}^{m-1} \frac{(m\rho)^k}{k!} + \frac{(m\rho)^m}{m!}\sum_{k=m}^{\infty} \rho^{k-m} \right] &= 1 \\
P_0 \left[\sum_{k=0}^{m-1} \frac{(m\rho)^k}{k!} + \frac{(m\rho)^m}{m!(1-\rho)} \right] &= 1
\end{align*}
Therefore,
\[P_0 = \left[\sum_{k=0}^{m-1} \frac{(m\rho)^k}{k!} + \frac{(m\rho)^m}{m!(1-\rho)} \right]^{-1}\]
\vspace{1cm}
\noindent \textbf{1. (b) (i)}
\noindent When \(m = 3\),
\[
P_k =
\begin{dcases}
P_0 \left(\frac{(3\rho)^k}{k!}\right) & k < 3 \\[1.5ex]
P_0 \left(\frac{3^3\rho^k}{3!}\right) = P_0 \left(\frac{9\rho^k}{2}\right) & k \geq 3
\end{dcases}
\quad\text{,}\quad \rho = \frac{\lambda}{m\mu} < 1
\]
\(\rho < 1\) for steady state solution to exist
\newpage
\noindent \textbf{1. (b) (ii)}
\noindent Substituting \(m = 3\) into \(P_0\) obtained in \textbf{1. (a) (ii)},
\begin{align*}
P_0 &= \left[\sum_{k=0}^{3-1} \frac{(3\rho)^k}{k!} + \frac{(3\rho)^3}{3!(1-\rho)} \right]^{-1} \\
&= \left[\sum_{k=0}^{2} \frac{(3\rho)^k}{k!} + \frac{9\rho^3}{2(1-\rho)} \right]^{-1} \\
&= \left[\sum_{k=0}^{2} \frac{(3\rho)^k}{k!} + \frac{9\rho^3}{2(1-\rho)} \right]^{-1} \\
&= \left[1 + 3\rho + \frac{9\rho^2}{2} + \frac{9\rho^3}{2(1-\rho)}\right]^{-1}
\end{align*}
\vspace{1cm}
\noindent \textbf{1. (b) (iii)}
\noindent For \(m = 3\), the average number of packets in the system is:
\begin{align*}
E\{k\} &= \sum_{k=0}^{m-1} kP_k + \sum_{k=m}^{\infty} kP_k \\
&= \sum_{k=0}^{2} kP_0\left(\frac{(3\rho)^k}{k!}\right) + \sum_{k=3}^{\infty} kP_0 \left(\frac{9\rho^k}{2}\right) \\
&= P_0\sum_{k=0}^{2} \frac{k(3\rho)^k}{k!} + \frac{9P_0}{2}\sum_{k=3}^{\infty} k\rho^k \\
\intertext{Further simplifying the above expression,}
E\{k\} &= P_0 \left[\sum_{k=1}^{2} \frac{(3\rho)^k}{(k-1)!} + \frac{9}{2}\left(\sum_{k=0}^{\infty} k\rho^k - \rho - 2\rho^2\right) \right]
\end{align*}
\noindent\(\sum_{k=0}^{\infty} k\rho^k\) can be simplified as
\begin{align*}
\sum_{k=0}^{\infty} k\rho^k = \rho\sum_{k=0}^{\infty} k\rho^{k-1} = \rho\frac{\partial}{\partial\rho}\sum_{k=0}^{\infty} \rho^k = \rho\frac{\partial}{\partial\rho}\left[\frac{1}{1-\rho}\right] = \frac{\rho}{(1-\rho)^2}
\end{align*}
Hence,
\begin{align*}
E\{k\} &= P_0 \left[3\rho + 9\rho^2 + \frac{9}{2}\left(\frac{\rho}{(1-\rho)^2} - \rho - 2\rho^2\right) \right] \\
&= P_0 \left[3\rho + 9\rho^2 + \frac{9\rho}{2(1-\rho)^2} - \frac{9\rho}{2} - 9\rho^2 \right] \\
&= P_0 \left[\frac{9\rho}{2(1-\rho)^2} - \frac{3\rho}{2}\right]
\end{align*}
% ==================================================================
\newpage
\section*{Question 2}
\textbf{2. (a) (i)}
\noindent The formula for the Poisson distribution of \(k\) events occurring in a time interval \(t\) is:
\[
P(k \mid t,\lambda) = \frac{(\lambda t)^k}{k!}\exp{(-\lambda t)}
\]
where \(\lambda\) is the rate at which the events are occurring.
\vspace{0.5cm}
\noindent Mean of Poisson distribution:
\begin{align*}
E\{k\} = \sum_{k=0}^{\infty} kP(k \mid t,\lambda) &= \sum_{k=0}^{\infty} \frac{k(\lambda t)^k}{k!} \exp{(-\lambda t)} \\
&= \exp{(-\lambda t)} \sum_{k=1}^{\infty} \frac{(\lambda t)^k}{(k-1)!} \\
&= \lambda t\exp{(-\lambda t)}\sum_{k=1}^{\infty} \frac{(\lambda t)^{k-1}}{(k-1)!} \\
&= \lambda t\exp{(-\lambda t)}\sum_{m=0}^{\infty} \frac{(\lambda t)^m}{m!} \\
&= \lambda t\exp{(-\lambda t)}\exp{(\lambda t)} \\
&= \lambda t
\end{align*}
\noindent Variance of Poisson distribution:
\begin{align*}
var\{k\} &= E\{k^2\} - (E\{k\})^2 \\
&= E\{k^2\} - (\lambda t)^2
\intertext{where}
E\{k^2\} = \sum_{k=0}^{\infty}k^2P(k \mid t,\lambda) &= \sum_{k=0}^{\infty} \frac{k^2(\lambda t)^k}{k!} \exp{(-\lambda t)} \\
&= \exp{(-\lambda t)} \sum_{k=1}^{\infty} \frac{k(\lambda t)^k}{(k-1)!} \\
&= \exp{(-\lambda t)} \left[\sum_{k=1}^{\infty} \frac{(k-1)(\lambda t)^k}{(k-1)!} + \sum_{k=1}^{\infty} \frac{(\lambda t)^k}{(k-1)!} \right] \\
&= \exp{(-\lambda t)} \left[(\lambda t)^2\sum_{k=2}^{\infty} \frac{(\lambda t)^{k-2}}{(k-2)!} + (\lambda t)\sum_{k=1}^{\infty} \frac{(\lambda t)^{k-1}}{(k-1)!} \right] \\
&= \exp{(-\lambda t)} \left[(\lambda t)^2\exp{(\lambda t)} + (\lambda t)\exp{(\lambda t)} \right] \\
&= (\lambda t)^2 + \lambda t
\intertext{therefore}
var\{k\} &= (\lambda t)^2 + \lambda t - (\lambda t)^2 \\
&= \lambda t
\end{align*}
\vspace{1cm}
\noindent\textbf{2. (a) (ii)}
\begin{align*}
P(\text{no arrivals in time interval }T) &= P(k = 0 \mid t = T,\lambda) \\
&= \frac{(\lambda T)^0}{0!}\exp{(-\lambda T)} \\
&= \exp{(-\lambda T)}
\end{align*}
\vspace{1cm}
\noindent\textbf{2. (a) (iii)}
\begin{align*}
P(\text{at least one arrival in time interval }T) &= 1 - P(\text{no arrivals in time interval }T) \\
&= 1 - \exp{(-\lambda T)}
\end{align*}
\vspace{1cm}
\noindent\textbf{2. (b) (i)}
\noindent The balance equation is:
\[\lambda_{k-1}P_{k-1} + \mu_{k+1}P_{k+1} = \lambda_kP_k + \mu_kP_k\]
\noindent The solution of this equation is:
\begin{align*}
\lambda_{k-1}P_{k-1} &= \mu_kP_k \\
P_k &= \frac{\lambda}{\mu}\alpha^{k-1}P_{k-1}
\end{align*}
Calculating the first few terms,
\begin{alignat*}{2}
P_1 &= \frac{\lambda}{\mu}P_0 \\
P_2 &= \frac{\lambda}{\mu}\alpha P_1 &&= \left(\frac{\lambda}{\mu}\right)^2\alpha P_0 \\
P_3 &= \frac{\lambda}{\mu}\alpha^2 P_2 &&= \left(\frac{\lambda}{\mu}\right)^3\alpha^3 P_0 \\
P_4 &= \frac{\lambda}{\mu}\alpha^3 P_3 &&= \left(\frac{\lambda}{\mu}\right)^4\alpha^6 P_0
\end{alignat*}
Hence, the general solution is:
\[P_k = \left(\frac{\lambda}{\mu}\right)^k \alpha^{\textstyle\frac{k(k-1)}{2}}P_0 \quad\text{,}\quad k \geq 0\]
\noindent In order to achieve a steady state solution for all state \(k\), the arrival rate (\(\lambda_k = \lambda a^k\)) must be smaller than the service rate (\(\mu_k = \mu\)). If \(a \geq 1\), it is possible that \(\lambda a^k \geq \mu\) for some \(\lambda\), \(\mu\), or \(k\). Therefore, \(\alpha\) must be \(0 \leq \alpha < 1\).
\newpage
\noindent\textbf{2. (b) (ii)}
\noindent Calculate \(P_0\) using the normalisation condition:
\begin{align*}
\sum_{k=0}^{\infty} P_k &= 1 \\
\sum_{k=0}^{\infty} \left(\frac{\lambda}{\mu}\right)^k \alpha^{\textstyle\frac{k(k-1)}{2}}P_0 &= 1 \\
P_0 \sum_{k=0}^{\infty} \left(\frac{\lambda}{\mu}\right)^k \alpha^{\textstyle\frac{k(k-1)}{2}} &= 1
\end{align*}
Therefore,
\[P_0 = \left[\sum_{k=0}^{\infty} \left(\frac{\lambda}{\mu}\right)^k\alpha^{\textstyle\frac{k(k-1)}{2}}\right]^{-1}\]
\begin{align*}
P(\text{two or more people in the system}) &= 1 - P_0 - P_1 \\
&= 1 - P_0 - \frac{\lambda}{\mu}P_0 \\
&= 1 - P_0\left(1 + \frac{\lambda}{\mu}\right) \\
&= 1 - \left(1 + \frac{\lambda}{\mu}\right)\left[\sum_{k=0}^{\infty} \left(\frac{\lambda}{\mu}\right)^k\alpha^{\textstyle\frac{k(k-1)}{2}}\right]^{-1}
\end{align*}
\vspace{1cm}
\noindent\textbf{2. (b) (iii)}
\begin{align*}
\Bar{\lambda} &= \sum_{k=0}^{\infty} \lambda_kP_k \\
&= \sum_{k=0}^{\infty} \lambda\alpha^k \left(\frac{\lambda}{\mu}\right)^k \alpha^{\textstyle\frac{k(k-1)}{2}}P_0 \\
&= \lambda P_0 \sum_{k=0}^{\infty} \left(\frac{\lambda}{\mu}\right)^k \alpha^{\textstyle\frac{k(k-1) + 2k}{2}} \\
&= \lambda \left[\sum_{k=0}^{\infty} \left(\frac{\lambda}{\mu}\right)^k\alpha^{\textstyle\frac{k(k-1)}{2}}\right]^{-1} \left[\sum_{k=0}^{\infty} \left(\frac{\lambda}{\mu}\right)^k \alpha^{\textstyle\frac{k(k+1)}{2}}\right]
\end{align*}
\noindent In \textbf{2. (b) (i)}, the value of \(\alpha\) is restricted to \(0 \leq \alpha < 1\). Consider three cases here:
\noindent \textbf{Case 1:} \(a = 0\)
\[\Bar{\lambda} = \lambda \left[1 + \frac{\lambda}{\mu}\right]^{-1}\]
\(\Bar{\lambda} < \lambda\), thus a steady state solution exists
\noindent \textbf{Case 2:} \(a = 1\)
\begin{align*}
\Bar{\lambda} &= \lambda \left[\sum_{k=0}^{\infty} \left(\frac{\lambda}{\mu}\right)^k\right]^{-1} \left[\sum_{k=0}^{\infty} \left(\frac{\lambda}{\mu}\right)^k \right] \\
&= \lambda
\end{align*}
\noindent \textbf{Case 3:} \(a > 1\)
In this case, both infinite sum \(\sum_{k=0}^{\infty} \left(\frac{\lambda}{\mu}\right)^k\alpha^{\textstyle\frac{k(k-1)}{2}}\) and \(\sum_{k=0}^{\infty} \left(\frac{\lambda}{\mu}\right)^k \alpha^{\textstyle\frac{k(k+1)}{2}}\) will not converge. Therefore, it is possible that the average arrival rate (\(\Bar{\lambda}\)) is greater than the average service rate (\(\Bar{\mu}\)), the queue continues to grow in size and a steady state distrubution does not exist.
N.B. Since the service rate (\(\mu_k\)) is constant across all states \(k\), thus the average service rate is equal to \(\mu\).
\vspace{1cm}
\noindent\textbf{2. (b) (iv)}
\[P_0 = \left[\sum_{k=0}^{\infty} \left(\frac{\lambda}{\mu}\right)^k\alpha^{\textstyle\frac{k(k-1)}{2}}\right]^{-1}\]
\noindent If \(\displaystyle\frac{\lambda}{\mu} < 1\), it is known that
\[\sum_{k=0}^{\infty} \left(\frac{\lambda}{\mu}\right)^k = \frac{1}{1 - \frac{\lambda}{\mu}} \]
\noindent and when \(a = 1\),
\begin{align*}
\sum_{k=0}^{\infty} \left(\frac{\lambda}{\mu}\right)^k\alpha^{\textstyle\frac{k(k-1)}{2}} &\equiv \sum_{k=0}^{\infty} \left(\frac{\lambda}{\mu}\right)^k \\[1.5ex]
&= \frac{1}{1 - \frac{\lambda}{\mu}}
\end{align*}
\noindent Therefore, when \(0 \leq \alpha < 1\),
\begin{align*}
\sum_{k=0}^{\infty} \left(\frac{\lambda}{\mu}\right)^k\alpha^{\textstyle\frac{k(k-1)}{2}} &< \frac{1}{1 - \frac{\lambda}{\mu}} \\
\left[\sum_{k=0}^{\infty} \left(\frac{\lambda}{\mu}\right)^k\alpha^{\textstyle\frac{k(k-1)}{2}}\right]^{-1} &> 1 - \frac{\lambda}{\mu} \\
\intertext{and thus}
P_0 &> 1 - \frac{\lambda}{\mu}
\end{align*}
\newpage
\noindent\textbf{2. (b) (v)}
% \noindent The condition \(\displaystyle\frac{\lambda}{\mu} < 1\) is necessary for a steady state solution to exist.
\noindent For \(0 \leq \alpha < 1\), by observing at the expression \(P_0\):
\[P_0 = \left[\sum_{k=0}^{\infty} \left(\frac{\lambda}{\mu}\right)^k\alpha^{\textstyle\frac{k(k-1)}{2}}\right]^{-1}\]
\noindent the infinite sum is guaranteed to converge when \(\displaystyle\frac{\lambda}{\mu} < 1\) as \(k \rightarrow \infty\).
\noindent \underline{\textbf{Analysis for }\(\displaystyle\frac{\lambda}{\mu} \geq 1\)}
\begin{itemize}
\item If \(\displaystyle\frac{\lambda}{\mu} = 1\), as \(k \rightarrow \infty\), \(\displaystyle\left(\frac{\lambda}{\mu}\right)^k = 1\)
\item If \(\displaystyle\frac{\lambda}{\mu} > 1\), as \(k \rightarrow \infty\), \(\displaystyle\left(\frac{\lambda}{\mu}\right)^k \rightarrow \infty\)
\item For \(0 \leq \alpha < 1\), as \(k \rightarrow \infty\), \(\alpha^{\textstyle\frac{k(k-1)}{2}} \rightarrow 0\)
\end{itemize}
\noindent Therefore, a steady state solution does not exist for \(\displaystyle\frac{\lambda}{\mu} > 1\) as \(\infty \times 0\) is undefined. However, a steady state solution does exist for \(\displaystyle\frac{\lambda}{\mu} = 1\) as the sum converges.
In summary, the infinite sum will converge when \(\displaystyle\frac{\lambda}{\mu} \leq 1\). As a result, the condition \(\displaystyle\frac{\lambda}{\mu} < 1\) (or more precisely, \(\displaystyle\frac{\lambda}{\mu} \leq 1\)) is necessary for a steady state solution to exist.
\end{document}