forked from vishalrk1/SkimLit
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEmbeddings.py
27 lines (24 loc) · 1.15 KB
/
Embeddings.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import torch
import numpy as np
def load_glove_embeddings(embeddings_file):
"""Load embeddings from a file."""
embeddings = {}
with open(embeddings_file, "r", encoding="utf8") as fp:
for index, line in enumerate(fp):
values = line.split()
word = values[0]
embedding = np.asarray(values[1:], dtype='float32')
embeddings[word] = embedding
return embeddings
def make_embeddings_matrix(embeddings, word_index, embedding_dim):
"""Create embeddings matrix to use in Embedding layer."""
embedding_matrix = np.zeros((len(word_index), embedding_dim))
for word, i in word_index.items():
embedding_vector = embeddings.get(word)
if embedding_vector is not None:
embedding_matrix[i] = embedding_vector
return embedding_matrix
def get_embeddings(embedding_file_path, tokenizer, embedding_dim):
glove_embeddings = load_glove_embeddings(embeddings_file=embedding_file_path)
embedding_matrix = make_embeddings_matrix(embeddings=glove_embeddings, word_index=tokenizer.token_to_index, embedding_dim=embedding_dim)
return embedding_matrix