-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathchar_test.py
221 lines (191 loc) · 10.2 KB
/
char_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
"""
Paper: "UTRNet: High-Resolution Urdu Text Recognition In Printed Documents" presented at ICDAR 2023
Authors: Abdur Rahman, Arjun Ghosh, Chetan Arora
GitHub Repository: https://github.com/abdur75648/UTRNet-High-Resolution-Urdu-Text-Recognition
Project Website: https://abdur75648.github.io/UTRNet/
Copyright (c) 2023-present: This work is licensed under the Creative Commons Attribution-NonCommercial
4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/)
"""
# First, create character-wise accuracy table in a CSV file by running ```char_test.py```
# Then visualize the result by running ```char_test_vis```
import os,shutil
import time
import argparse
import re
import matplotlib.pyplot as plt
from datetime import datetime
import pytz
import torch
import torch.utils.data
import torch.nn.functional as F
from tqdm import tqdm
from nltk.metrics.distance import edit_distance
from utils import CTCLabelConverter, AttnLabelConverter, Averager, Logger, allign_two_strings
from dataset import hierarchical_dataset, AlignCollate
from model import Model
def validation(model, criterion, evaluation_loader, converter, opt, device):
""" validation or evaluation """
# Calculate CER accuracy
sum_len_gt = 0
norm_ED = 0
# Calculate character-wise accuracy
total_occurence = {}
correct_occurence = {}
for char in list(opt.character):
total_occurence[char] = 0
correct_occurence[char] = 0
for i, (image_tensors, labels) in enumerate(tqdm(evaluation_loader)):
batch_size = image_tensors.size(0)
image = image_tensors.to(device)
# For max length prediction
length_for_pred = torch.IntTensor([opt.batch_max_length] * batch_size).to(device)
text_for_pred = torch.LongTensor(batch_size, opt.batch_max_length + 1).fill_(0).to(device)
text_for_loss, length_for_loss = converter.encode(labels, batch_max_length=opt.batch_max_length)
start_time = time.time()
if 'CTC' in opt.Prediction:
preds = model(image, text_for_pred)
forward_time = time.time() - start_time
preds_size = torch.IntTensor([preds.size(1)] * batch_size)
cost = criterion(preds.log_softmax(2).permute(1, 0, 2), text_for_loss, preds_size, length_for_loss)
_, preds_index = preds.max(2)
preds_str = converter.decode(preds_index.data, preds_size.data)
else:
preds = model(image, text_for_pred, is_train=False)
forward_time = time.time() - start_time
preds = preds[:, :text_for_loss.shape[1] - 1, :]
target = text_for_loss[:, 1:] # without [GO] Symbol
cost = criterion(preds.contiguous().view(-1, preds.shape[-1]), target.contiguous().view(-1))
_, preds_index = preds.max(2)
preds_str = converter.decode(preds_index, length_for_pred)
labels = converter.decode(text_for_loss[:, 1:], length_for_loss)
# calculate accuracy & confidence score
preds_prob = F.softmax(preds, dim=2)
preds_max_prob, _ = preds_prob.max(dim=2)
confidence_score_list = []
for gt, pred, pred_max_prob in zip(labels, preds_str, preds_max_prob):
if 'Attn' in opt.Prediction:
gt = gt[:gt.find('[s]')]
pred_EOS = pred.find('[s]')
pred = pred[:pred_EOS] # prune after "end of sentence" token ([s])
pred_max_prob = pred_max_prob[:pred_EOS]
# ICDAR2019 Normalized Edit Distance
if len(gt) == 0 or len(pred) == 0:
ED = 0
elif len(gt) > len(pred):
ED = 1 - edit_distance(pred, gt) / len(gt)
else:
ED = 1 - edit_distance(pred, gt) / len(pred)
sum_len_gt += len(gt)
norm_ED += (ED*len(gt))
gt_aligned,pred_aligned = allign_two_strings(str(gt).replace(" ",""), str(pred).replace(" ",""))
# Count total occurence of each alphabet in both strings
for i in range(len(gt_aligned)):
total_occurence[gt_aligned[i]] += 1
# Now check if the character is correct in the prediction
if gt_aligned[i] == pred_aligned[i]:
correct_occurence[gt_aligned[i]] += 1
# calculate confidence score (= multiply of pred_max_prob)
try:
confidence_score = pred_max_prob.cumprod(dim=0)[-1]
except:
confidence_score = 0 # for empty pred case, when prune after "end of sentence" token ([s])
confidence_score_list.append(confidence_score)
# print(pred, gt, pred==gt, confidence_score)
norm_ED = norm_ED / float(sum_len_gt)
return norm_ED,total_occurence, correct_occurence
def test(opt, device):
opt.device = device
os.makedirs("test_outputs", exist_ok=True)
datetime_now = str(datetime.now(pytz.timezone('Asia/Kolkata')).strftime("%Y-%m-%d_%H-%M-%S"))
logger = Logger(f'test_outputs/{datetime_now}.txt')
""" model configuration """
if 'CTC' in opt.Prediction:
converter = CTCLabelConverter(opt.character)
else:
converter = AttnLabelConverter(opt.character)
opt.num_class = len(converter.character)
if opt.rgb:
opt.input_channel = 3
model = Model(opt)
logger.log('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial, opt.input_channel, opt.output_channel,
opt.hidden_size, opt.num_class, opt.batch_max_length, opt.FeatureExtraction,
opt.SequenceModeling, opt.Prediction)
model = model.to(device)
# load model
model.load_state_dict(torch.load(opt.saved_model, map_location=device))
logger.log('Loaded pretrained model from %s' % opt.saved_model)
# logger.log(model)
""" setup loss """
if 'CTC' in opt.Prediction:
criterion = torch.nn.CTCLoss(zero_infinity=True).to(device)
else:
criterion = torch.nn.CrossEntropyLoss(ignore_index=0).to(device) # ignore [GO] token = ignore index 0
""" evaluation """
model.eval()
with torch.no_grad():
AlignCollate_evaluation = AlignCollate(imgH=opt.imgH, imgW=opt.imgW)#, keep_ratio_with_pad=opt.PAD)
eval_data, eval_data_log = hierarchical_dataset(root=opt.eval_data, opt=opt, rand_aug=False)
logger.log(eval_data_log)
evaluation_loader = torch.utils.data.DataLoader(
eval_data, batch_size=opt.batch_size,
shuffle=False,
num_workers=int(opt.workers),
collate_fn=AlignCollate_evaluation, pin_memory=True)
norm_ED,total_occurence, correct_occurence = validation( model, criterion, evaluation_loader, converter, opt,device)
logger.log("="*20)
logger.log(f'Norm_ED : {norm_ED:0.4f}\n')
logger.log("="*20)
Accuracy = {}
for char in list(opt.character):
if total_occurence[char] != 0:
Accuracy[char] = 100*correct_occurence[char]/total_occurence[char]
sorted_accuracy = sorted(Accuracy.items(), key=lambda x: x[1], reverse=True)
import pandas as pd
df = pd.DataFrame(columns=["Alphabet", "Accuracy"])
for key, value in sorted_accuracy:
if value != 0 and key in opt.check_char:
# print(f"Accuracy of {key}: {value:.2f}")
# Concatenate the data into a dataframe
df = pd.concat([df, pd.DataFrame([[key, value]], columns=["Alphabet", "Accuracy"])], ignore_index=True)
df.to_csv("Character-wise-accuracy.csv", index=False)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--threshold', type=float, help='Save samples below this threshold in txt file', default=50.0)
parser.add_argument('--eval_data', required=True, help='path to evaluation dataset')
parser.add_argument('--workers', type=int, help='number of data loading workers', default=4)
parser.add_argument('--batch_size', type=int, default=32, help='input batch size')
parser.add_argument('--saved_model', required=True, help="path to saved_model to evaluation")
""" Data processing """
parser.add_argument('--batch_max_length', type=int, default=100, help='maximum-label-length')
parser.add_argument('--imgH', type=int, default=32, help='the height of the input image')
parser.add_argument('--imgW', type=int, default=400, help='the width of the input image')
parser.add_argument('--rgb', action='store_true', help='use rgb input')
""" Model Architecture """
parser.add_argument('--FeatureExtraction', type=str, default="HRNet", #required=True,
help='FeatureExtraction stage VGG|RCNN|ResNet|UNet|HRNet|Densenet|InceptionUnet|ResUnet|AttnUNet|UNet|VGG')
parser.add_argument('--SequenceModeling', type=str, default="DBiLSTM", #required=True,
help='SequenceModeling stage LSTM|GRU|MDLSTM|BiLSTM|DBiLSTM')
parser.add_argument('--Prediction', type=str, default="CTC", #required=True,
help='Prediction stage CTC|Attn')
parser.add_argument('--num_fiducial', type=int, default=20, help='number of fiducial points of TPS-STN')
parser.add_argument('--input_channel', type=int, default=1, help='the number of input channel of Feature extractor')
parser.add_argument('--output_channel', type=int, default=512, help='the number of output channel of Feature extractor')
parser.add_argument('--hidden_size', type=int, default=256, help='the size of the LSTM hidden state')
opt = parser.parse_args()
if opt.FeatureExtraction == "HRNet":
opt.output_channel = 32
""" vocab / character number configuration """
file = open("UrduGlyphs.txt","r",encoding="utf-8")
content = file.readlines()
content = ''.join([str(elem).strip('\n') for elem in content])
opt.character = content+" "
opt.check_char = ['ا','آ', 'ب', 'پ', 'ت', 'ٹ',
'ث', 'ج', 'چ', 'ح', 'خ',
'د', 'ڈ', 'ذ', 'ر', 'ڑ',
'ز', 'ژ', 'س', 'ش', 'ص',
'ض', 'ط', 'ظ', 'ع', 'غ',
'ف', 'ق', 'ک', 'ك', 'گ',
'ل', 'م', 'ن', 'ں', 'و',
'ہ', 'ھ', 'ء', 'ی', 'ے']
device = torch.device('cuda:2' if torch.cuda.is_available() else 'cpu')
test(opt, device)