forked from rtqichen/torchdiffeq
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbouncing_ball.py
212 lines (167 loc) · 6.39 KB
/
bouncing_ball.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
#!/usr/bin/env python3
import argparse
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
from torchdiffeq import odeint, odeint_adjoint
from torchdiffeq import odeint_event
torch.set_default_dtype(torch.float64)
class BouncingBallExample(nn.Module):
def __init__(self, radius=0.2, gravity=9.8, adjoint=False):
super().__init__()
self.gravity = nn.Parameter(torch.as_tensor([gravity]))
self.log_radius = nn.Parameter(torch.log(torch.as_tensor([radius])))
self.t0 = nn.Parameter(torch.tensor([0.0]))
self.init_pos = nn.Parameter(torch.tensor([10.0]))
self.init_vel = nn.Parameter(torch.tensor([0.0]))
self.absorption = nn.Parameter(torch.tensor([0.2]))
self.odeint = odeint_adjoint if adjoint else odeint
def forward(self, t, state):
pos, vel, log_radius = state
dpos = vel
dvel = -self.gravity
return dpos, dvel, torch.zeros_like(log_radius)
def event_fn(self, t, state):
# positive if ball in mid-air, negative if ball within ground.
pos, _, log_radius = state
return pos - torch.exp(log_radius)
def get_initial_state(self):
state = (self.init_pos, self.init_vel, self.log_radius)
return self.t0, state
def state_update(self, state):
"""Updates state based on an event (collision)."""
pos, vel, log_radius = state
pos = (
pos + 1e-7
) # need to add a small eps so as not to trigger the event function immediately.
vel = -vel * (1 - self.absorption)
return (pos, vel, log_radius)
def get_collision_times(self, nbounces=1):
event_times = []
t0, state = self.get_initial_state()
for i in range(nbounces):
event_t, solution = odeint_event(
self,
state,
t0,
event_fn=self.event_fn,
reverse_time=False,
atol=1e-8,
rtol=1e-8,
odeint_interface=self.odeint,
)
event_times.append(event_t)
state = self.state_update(tuple(s[-1] for s in solution))
t0 = event_t
return event_times
def simulate(self, nbounces=1):
event_times = self.get_collision_times(nbounces)
# get dense path
t0, state = self.get_initial_state()
trajectory = [state[0][None]]
velocity = [state[1][None]]
times = [t0.reshape(-1)]
for event_t in event_times:
tt = torch.linspace(
float(t0), float(event_t), int((float(event_t) - float(t0)) * 50)
)[1:-1]
tt = torch.cat([t0.reshape(-1), tt, event_t.reshape(-1)])
solution = odeint(self, state, tt, atol=1e-8, rtol=1e-8)
trajectory.append(solution[0][1:])
velocity.append(solution[1][1:])
times.append(tt[1:])
state = self.state_update(tuple(s[-1] for s in solution))
t0 = event_t
return (
torch.cat(times),
torch.cat(trajectory, dim=0).reshape(-1),
torch.cat(velocity, dim=0).reshape(-1),
event_times,
)
def gradcheck(nbounces):
system = BouncingBallExample()
variables = {
"init_pos": system.init_pos,
"init_vel": system.init_vel,
"t0": system.t0,
"gravity": system.gravity,
"log_radius": system.log_radius,
}
event_t = system.get_collision_times(nbounces)[-1]
event_t.backward()
analytical_grads = {}
for name, p in system.named_parameters():
for var in variables.keys():
if var in name:
analytical_grads[var] = p.grad
eps = 1e-3
fd_grads = {}
for var, param in variables.items():
orig = param.data
param.data = orig - eps
f_meps = system.get_collision_times(nbounces)[-1]
param.data = orig + eps
f_peps = system.get_collision_times(nbounces)[-1]
param.data = orig
fd = (f_peps - f_meps) / (2 * eps)
fd_grads[var] = fd
success = True
for var in variables.keys():
analytical = analytical_grads[var]
fd = fd_grads[var]
if torch.norm(analytical - fd) > 1e-4:
success = False
print(
f"Got analytical grad {analytical.item()} for {var} param but finite difference is {fd.item()}"
)
if not success:
raise Exception("Gradient check failed.")
print("Gradient check passed.")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Process some integers.")
parser.add_argument("nbounces", type=int, nargs="?", default=10)
parser.add_argument("--adjoint", action="store_true")
args = parser.parse_args()
gradcheck(args.nbounces)
system = BouncingBallExample()
times, trajectory, velocity, event_times = system.simulate(nbounces=args.nbounces)
times = times.detach().cpu().numpy()
trajectory = trajectory.detach().cpu().numpy()
velocity = velocity.detach().cpu().numpy()
event_times = torch.stack(event_times).detach().cpu().numpy()
plt.figure(figsize=(7, 3.5))
# Event locations.
for event_t in event_times:
plt.plot(
event_t,
0.0,
color="C0",
marker="o",
markersize=7,
fillstyle="none",
linestyle="",
)
(vel,) = plt.plot(
times, velocity, color="C1", alpha=0.7, linestyle="--", linewidth=2.0
)
(pos,) = plt.plot(times, trajectory, color="C0", linewidth=2.0)
plt.hlines(0, 0, 100)
plt.xlim([times[0], times[-1]])
plt.ylim([velocity.min() - 0.02, velocity.max() + 0.02])
plt.ylabel("Markov State", fontsize=16)
plt.xlabel("Time", fontsize=13)
plt.legend([pos, vel], ["Position", "Velocity"], fontsize=16)
plt.gca().xaxis.set_tick_params(
direction="in", which="both"
) # The bottom will maintain the default of 'out'
plt.gca().yaxis.set_tick_params(
direction="in", which="both"
) # The bottom will maintain the default of 'out'
# Hide the right and top spines
plt.gca().spines["right"].set_visible(False)
plt.gca().spines["top"].set_visible(False)
# Only show ticks on the left and bottom spines
plt.gca().yaxis.set_ticks_position("left")
plt.gca().xaxis.set_ticks_position("bottom")
plt.tight_layout()
plt.savefig("bouncing_ball.png")