forked from kodecocodes/swift-algorithm-club
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathKMeans.swift
95 lines (76 loc) · 2.76 KB
/
KMeans.swift
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import Foundation
class KMeans<Label: Hashable> {
let numCenters: Int
let labels: [Label]
private(set) var centroids = [Vector]()
init(labels: [Label]) {
assert(labels.count > 1, "Exception: KMeans with less than 2 centers.")
self.labels = labels
self.numCenters = labels.count
}
private func indexOfNearestCenter(_ x: Vector, centers: [Vector]) -> Int {
var nearestDist = DBL_MAX
var minIndex = 0
for (idx, center) in centers.enumerated() {
let dist = x.distanceTo(center)
if dist < nearestDist {
minIndex = idx
nearestDist = dist
}
}
return minIndex
}
func trainCenters(_ points: [Vector], convergeDistance: Double) {
let zeroVector = Vector([Double](repeating: 0, count: points[0].length))
// Randomly take k objects from the input data to make the initial centroids.
var centers = reservoirSample(points, k: numCenters)
var centerMoveDist = 0.0
repeat {
// This array keeps track of which data points belong to which centroids.
var classification: [[Vector]] = .init(repeating: [], count: numCenters)
// For each data point, find the centroid that it is closest to.
for p in points {
let classIndex = indexOfNearestCenter(p, centers: centers)
classification[classIndex].append(p)
}
// Take the average of all the data points that belong to each centroid.
// This moves the centroid to a new position.
let newCenters = classification.map { assignedPoints in
assignedPoints.reduce(zeroVector, +) / Double(assignedPoints.count)
}
// Find out how far each centroid moved since the last iteration. If it's
// only a small distance, then we're done.
centerMoveDist = 0.0
for idx in 0..<numCenters {
centerMoveDist += centers[idx].distanceTo(newCenters[idx])
}
centers = newCenters
} while centerMoveDist > convergeDistance
centroids = centers
}
func fit(_ point: Vector) -> Label {
assert(!centroids.isEmpty, "Exception: KMeans tried to fit on a non trained model.")
let centroidIndex = indexOfNearestCenter(point, centers: centroids)
return labels[centroidIndex]
}
func fit(_ points: [Vector]) -> [Label] {
assert(!centroids.isEmpty, "Exception: KMeans tried to fit on a non trained model.")
return points.map(fit)
}
}
// Pick k random elements from samples
func reservoirSample<T>(_ samples: [T], k: Int) -> [T] {
var result = [T]()
// Fill the result array with first k elements
for i in 0..<k {
result.append(samples[i])
}
// Randomly replace elements from remaining pool
for i in k..<samples.count {
let j = Int(arc4random_uniform(UInt32(i + 1)))
if j < k {
result[j] = samples[i]
}
}
return result
}