forked from csherwood-usgs/floc_proc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtarget_diagram.m
74 lines (69 loc) · 2.74 KB
/
target_diagram.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
function [RMSD_star,BIAS,R] = target_diagram( model, data, iplot, c, ou )
% [RMSD_star, BIAS, R] = target_diagram( model, data, iplot, ou)
%
% Input:
% model - array or vector of modeled results
% data - array or vector of observations, data, or reference
% (model and data must be same size, shape, and units)
% (NaNs in either will be ignored)
% iplot - 0 = no plot (default), 1 = plot
% c - color
% ou - observational uncertainty in normalized units (optional)
% Returns:
% RMDS_star - signed unbiased RMS difference (eqn 8)
% BIAS - normalized bias (eqn 9)
% R - correlation coeffcient (eqn 1)
% Jolliff et al., 2009, Summary diagrams for coupled hydrodynamic-ecosystem model
% skill assessment. Journal of Marine Systems 76 (2009) 64-82.
% DOI: 10.1016/j.jmarsys.2008.05.014
% 28 August 2015
if(exist('iplot','var')~=1),iplot = 0; end
if(exist('ou','var')~=1),ou = NaN; end
if(exist('c','var')~=1),c = [.2 .2 .2]; end
ok = find( ~isnan( model(:)+data(:) ) );
N = length(model(ok));
sigm = std(model(ok));
sigd = std(data(ok));
sig_star = sigm/sigd;
meanm = mean(model(ok));
meand = mean(data(ok));
BIAS = (meanm - meand)/sigd;
R = mean( (model(ok)-meanm).*(data(ok)-meand) )/(sigm*sigd);
RMSD = rms( model(ok)-data(ok) );
RMSD_prime = sqrt( mean( ((model(ok)-meanm)-(data(ok)-meand)).^2 ) );
RMSD_star = sign(sigm-sigd)*sqrt( 1. + sig_star^2 - 2.*sig_star*R );
% make a little report'
fprintf(1,'N: %d. Number of NaNs: %d\n',N, length(model(:))-N );
fprintf(1,' Mean Median Std. Min Max\n');
fprintf(1,'Data : %f %f %f %f %f\n',meand, median(data(ok)), sigd, min(data(ok)), max(data(ok)) );
fprintf(1,'Model : %f %f %f %f %f\n',meanm, median(model(ok)), sigm, min(model(ok)), max(model(ok)) )
fprintf(1,'Bias: %f RMSD*: %f, Lin. corr: %f\n',BIAS,RMSD_star,R);
% RR = corrcoef(model(ok),data(ok))
% C = RR(1,2)
if(iplot)
plot([-2 2],[0 0],'-k');
hold on
plot([0 0],[-2 2],'-k');
h=circle(1,0,0,'-k');
if(~isnan(ou))
h=circle(ou,0,0,'--k');
end
h=scatter(RMSD_star,BIAS,54,R,'filled');
set(h,'markeredgecolor',c);
caxis([-1,1]);
axis([-2 2 -2 2]);
axis square
xlabel('$$sign(\sigma_{model}-\sigma_{data}) \cdot RMSD^{\prime}/\sigma_{data}$$',...
'interpreter','latex','fontsize',14)
ylabel('$$(\overline{model} - \overline{data})/\sigma_{data}$$',...
'interpreter','latex','fontsize',14)
ht=text(-1.9,-1.75,'\downarrow Model bias low');
ht=text(-1.9,-1.9,'\leftarrow Model variance low');
ht=text(+1.9,+1.9,'Model variance high \rightarrow');
set(ht,'HorizontalAlignment','right')
ht=text(+1.9,+1.75,'Model bias high \uparrow');
set(ht,'HorizontalAlignment','right')
% xlabel('RMSD*''')
colorbar
end