forked from csherwood-usgs/floc_proc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathf_chi_func.m
89 lines (77 loc) · 2.27 KB
/
f_chi_func.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
function [ffi,chisvo,x] = f_chi_func( a, f, rhof )
% function [ffi,chisvo,x] = f_chi_func( a, f, rhof )
% Compute intrinsic form and scattering functions
%
% Input:
% a - particle radius (m)
% f - acoustic frequency (Hz)
% rhof - particle density (kg/m3) [optional - defaults to rhos]
%
% Returns:
% ffi - intrinsic form function
% x - nondimensional particle size
% Default to solid particles
global thorne
% These physcial parameters could be passed as arguments or global variables
if thorne
% For comparison with Thorne:
co=1480; % speed of sound in water
rhow=1000; % density of water
ck=5550; % speed of sound in particle
rhos=2600; % density of particle
v=1e-6; % kinematic viscosity
else
% For MVCO:
co=1500.; % speed of sound in water
rhow=1025.; % density of water
ck=5800; % speed of sound in quartz
rhos=2650; % density of quartz
v=1e-6; % kinematic viscosity
end
x=2*pi*a*f/co;
Co=1/(rhow*co^2);
Ck=1/(rhos*ck^2); %compressibility
gk=rhos/rhow;
hk=ck/co;
% effective density
if(exist('rhof','var')~=1), rhof = rhos;, end
rhoex = rhof-rhow;
% gamma_o zeta_o values
beta1=1.02; % gamma_o
beta2=1.02; % zeta_o
% maximum physical value for effective density
rhoex = min(rhoex, rhos-rhow);
% not letting effective density go below zero
rhoex = max( 0., rhoex );
gam=1.+rhoex/rhow;
gam = max( gam, beta1 );
%zz=find(gam<beta1); gam(zz)=beta1;
phi=(gk-gam)/(gk-1);
% Wood's expression - Eqn 9
vw=((phi*rhow+(1-phi)*rhos).*(phi*Co+(1-phi)*Ck)).^(-0.5);
h=vw/co;
zz=find(h<beta2); h(zz)=beta2;
% form function f_fi
% unnumbered Clay & Medwin eqn on p. 65
e=(gam.*h.^2);
kf=2*abs((e-1)./(3*e)+(gam-1)./(2*gam+1));
alpha1=1.2; % called epsilon_1 on p. 85
ffi=(kf.*x.^2)./(1+alpha1*x.^2); % Eqn. 6a
% second Clay & Medwin eqn. on p. 85
kalfa=2*(((e-1)./(3*e)).^2+(1/3)*((gam-1)./(2*gam+1)).^2);
% chi_h scattering; Eqn. 6b
chishc=(kalfa.*x.^4)./(1-1.0*x+1.5*x.^2+kalfa.*x.^4);
%subplot(2,1,2), loglog(x,chishc,':k'), hold on
% viscous attenuation
w=2*pi*f;
k=2*pi*f/co;
beta=sqrt(w/(2*v));
theta=0.5*(1+(9./(2*beta*a))); % after eqn 3c
tau=(9./(4*beta*a)).*(1+(1./(beta*a)));
e1=((k*(gam-1).^2)/2);
e2=tau./(tau.^2+(gam+theta).^2);
%converted to chi_hv values
e12=e1.*e2;
chiv=(4*a/3).*e12;
%combine scat and visc atten chi_h
chisvo=chishc+chiv;