TriyamiRender is designed to render 3D objects using OpenGL. It supports basic functionalities such as loading shaders, creating and rendering meshes and handling camera movements. The engine is built using C++ and leverages libraries such as GLFW for window management and input handling, GLEW for OpenGL extension loading, and GLM for mathematical operations.
git clone https://github.com/yourusername/3d-rendering-engine.git
cd 3d-rendering-engine
mkdir build
cd build
cmake ..
make
Below is an example of how to set up and use the Rendering Engine API:
#include <vector>
#include <math.h>
#include "Shader/Shader.h"
#include "Mesh/Mesh.h"
#include "Camera/Camera.h"
#include "Renderer/Renderer.h"
#include <iostream>
#include <chrono>
// Function to generate sphere vertices with normals
std::vector<float> generateSphereVertices(float radius, int sectorCount, int stackCount) {
std::vector<float> vertices;
float x, y, z, xy;
float nx, ny, nz, lengthInv = 1.0f / radius;
float sectorStep = 2 * M_PI / sectorCount;
float stackStep = M_PI / stackCount;
float sectorAngle, stackAngle;
for (int i = 0; i <= stackCount; ++i) {
stackAngle = M_PI / 2 - i * stackStep;
xy = radius * cosf(stackAngle);
z = radius * sinf(stackAngle);
for (int j = 0; j <= sectorCount; ++j) {
sectorAngle = j * sectorStep;
x = xy * cosf(sectorAngle);
y = xy * sinf(sectorAngle);
vertices.push_back(x);
vertices.push_back(y);
vertices.push_back(z);
nx = x * lengthInv;
ny = y * lengthInv;
nz = z * lengthInv;
vertices.push_back(nx);
vertices.push_back(ny);
vertices.push_back(nz);
}
}
return vertices;
}
// Function to generate sphere indices
std::vector<unsigned int> generateSphereIndices(int sectorCount, int stackCount) {
std::vector<unsigned int> indices;
int k1, k2;
for (int i = 0; i < stackCount; ++i) {
k1 = i * (sectorCount + 1);
k2 = k1 + sectorCount + 1;
for (int j = 0; j < sectorCount; ++j, ++k1, ++k2) {
if (i != 0) {
indices.push_back(k1);
indices.push_back(k2);
indices.push_back(k1 + 1);
}
if (i != (stackCount - 1)) {
indices.push_back(k1 + 1);
indices.push_back(k2);
indices.push_back(k2 + 1);
}
}
}
return indices;
}
int main() {
Renderer renderer(1600, 1200, "3D Rendering Engine");
Shader shader("../shaders/vertex_shader.glsl", "../shaders/fragment_shader.glsl");
renderer.setShader(&shader);
std::vector<float> sphereVertices = generateSphereVertices(0.4f, 216, 108);
std::vector<unsigned int> sphereIndices = generateSphereIndices(216, 108);
Mesh sphere(sphereVertices, sphereIndices);
renderer.addMesh(&sphere);
// FPS calculation
auto lastTime = std::chrono::high_resolution_clock::now();
int nbFrames = 0;
while (!glfwWindowShouldClose(renderer.window)) {
auto currentTime = std::chrono::high_resolution_clock::now();
float deltaTime = std::chrono::duration<float, std::chrono::seconds::period>(currentTime - lastTime).count();
nbFrames++;
if (deltaTime >= 1.0f) {
std::cout << 1000.0f / float(nbFrames) << " ms/frame" << std::endl;
nbFrames = 0;
lastTime = currentTime;
}
renderer.processInput();
renderer.renderLoop();
}
return 0;
}
#include "Renderer/Renderer.h"
Renderer renderer(1600, 1200, "3D Rendering Engine");
#include "Camera/Camera.h"
Camera camera;
camera.setPosition(glm::vec3(0.0f, 0.0f, 3.0f));
camera.setPerspective(45.0f, 800.0f / 600.0f, 0.1f, 100.0f);
#include "Shader/Shader.h"
Shader shader("../shaders/vertex_shader.glsl", "../shaders/fragment_shader.glsl");
renderer.setShader(&shader);
#include "Mesh/Mesh.h"
std::vector<float> sphereVertices = generateSphereVertices(0.4f, 216, 108);
std::vector<unsigned int> sphereIndices = generateSphereIndices(216, 108);
Mesh sphere(sphereVertices, sphereIndices);
renderer.addMesh(&sphere);
while (!glfwWindowShouldClose(renderer.window)) {
auto currentTime = std::chrono::high_resolution_clock::now();
float deltaTime = std::chrono::duration<float, std::chrono::seconds::period>(currentTime - lastTime).count();
nbFrames++;
if (deltaTime >= 1.0f) {
std::cout << 1000.0f / float(nbFrames) << " ms/frame" << std::endl;
nbFrames = 0;
lastTime = currentTime;
}
renderer.processInput();
renderer.renderLoop();
}