-
Notifications
You must be signed in to change notification settings - Fork 9
/
math_eval.py
289 lines (243 loc) · 11.2 KB
/
math_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import random
import os
import argparse
import time
from vllm import LLM, SamplingParams
from datetime import datetime
from tqdm import tqdm
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from evaluate import evaluate
from utils import set_seed, load_jsonl, save_jsonl, construct_prompt
from parser import *
from trajectory import *
from data_loader import load_data
from python_executor import PythonExecutor
from model_utils import load_hf_lm_and_tokenizer, generate_completions
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--data_names", default="gsm8k,math", type=str)
parser.add_argument("--data_dir", default="./data", type=str)
parser.add_argument("--model_name_or_path", default="gpt-4", type=str)
parser.add_argument("--output_dir", default="./output", type=str)
parser.add_argument("--prompt_type", default="tool-integrated", type=str)
parser.add_argument("--split", default="test", type=str)
parser.add_argument("--num_test_sample", default=-1, type=int) # -1 for full data
parser.add_argument("--seed", default=0, type=int)
parser.add_argument("--start", default=0, type=int)
parser.add_argument("--end", default=-1, type=int)
parser.add_argument("--temperature", default=0, type=float)
parser.add_argument("--n_sampling", default=1, type=int)
parser.add_argument("--top_p", default=1, type=float)
parser.add_argument("--max_tokens_per_call", default=1024, type=int)
parser.add_argument("--shuffle", action="store_true")
parser.add_argument("--use_vllm", action="store_true")
parser.add_argument("--save_outputs", action="store_true")
parser.add_argument("--overwrite", action="store_true")
parser.add_argument("--use_safetensors", action="store_true")
args = parser.parse_args()
args.top_p = 1 if args.temperature == 0 else args.top_p # top_p must be 1 when using greedy sampling (vllm)
return args
def prepare_data(data_name, args):
examples = load_data(data_name, args.split, args.data_dir)
# sample `num_test_sample` from dataset
if args.num_test_sample > 0:
examples = random.sample(examples, args.num_test_sample)
# shuffle
if args.shuffle:
random.shuffle(examples, seed=datetime.now().timestamp())
# select start and end
examples = examples[args.start:len(examples) if args.end == -1 else args.end]
# get out_file name
dt_string = datetime.now().strftime("%m-%d_%H-%M")
model_name = "/".join(args.model_name_or_path.split("/")[-2:])
out_file_prefix = f'{args.split}_{args.prompt_type}_{args.num_test_sample}_seed{args.seed}_t{args.temperature}'
# out_file = f'{args.output_dir}/{model_name}/{data_name}/{out_file_prefix}_s{args.start}_e{args.end}_{dt_string}.jsonl'
out_file = f'{args.output_dir}/{data_name}/{out_file_prefix}_s{args.start}_e{args.end}.jsonl'
os.makedirs(f'{args.output_dir}/{data_name}', exist_ok=True)
# load all processed samples
processed_samples = []
if not args.overwrite:
processed_files = [f for f in os.listdir(f"{args.output_dir}/{data_name}/") if f.endswith(".jsonl") and f.startswith(out_file_prefix)]
for f in processed_files:
processed_samples.extend(list(load_jsonl(f"{args.output_dir}/{data_name}/{f}")))
# dedepulicate
processed_samples = {sample['idx']: sample for sample in processed_samples}
processed_idxs = list(processed_samples.keys())
processed_samples = list(processed_samples.values())
total_examples = len(examples)
examples = [example for example in examples if example['idx'] not in processed_idxs]
# print(f"Idx {args.start} - {args.end}: Remain {len(examples)}/{total_examples} samples.")
return examples, processed_samples, out_file
def setup(args):
# load model
available_gpus = os.environ['CUDA_VISIBLE_DEVICES'].split(',')
if args.use_vllm:
llm = LLM(model=args.model_name_or_path, tensor_parallel_size=len(available_gpus), trust_remote_code=True)
tokenizer = None
else:
llm, tokenizer = load_hf_lm_and_tokenizer(
model_name_or_path=args.model_name_or_path,
load_in_half=True,
use_fast_tokenizer=True,
use_safetensors=args.use_safetensors,
)
# infer & eval
data_list = args.data_names.split(',')
results = []
for data_name in data_list:
results.append(main(llm, tokenizer, data_name, args))
# add "avg" result to data_list and results
data_list.append("avg")
results.append({
"acc": sum([result["acc"] for result in results]) / len(results),
})
# print all results
pad = max([len(data_name) for data_name in data_list])
print("\t".join(data_name.ljust(pad, " ") for data_name in data_list))
print("\t".join([f"{result['acc']:.1f}".ljust(pad, " ") for result in results]))
def main(llm, tokenizer, data_name, args):
examples, processed_samples, out_file = prepare_data(data_name, args)
print("=" * 50)
print("data:", data_name, " ,remain samples:", len(examples))
if len(examples) > 0:
print(examples[0])
# init python executor
if "pal" in args.prompt_type:
executor = PythonExecutor(get_answer_expr='solution()')
else:
executor = PythonExecutor(get_answer_from_stdout=True)
samples = []
for example in tqdm(examples, total=len(examples)):
idx = example['idx']
# parse question and answer
example['question'] = parse_question(example, data_name)
gt_cot, gt_ans = parse_ground_truth(example, data_name)
full_prompt = construct_prompt(example, data_name, args)
if idx == args.start:
print(full_prompt)
sample = {'idx': idx, 'question': example['question'], 'gt_cot': gt_cot, 'gt': gt_ans, 'prompt': full_prompt}
# add remain fields
for key in ['level', 'type', 'unit', 'solution_type', 'choices', 'solution', 'ques_type', \
'ans_type', 'answer_type', 'dataset', 'subfield', 'filed', 'theorem', 'answer']:
if key in example:
sample[key] = example[key]
samples.append(sample)
# repeat n times
input_prompts = [sample['prompt'] for sample in samples for _ in range(args.n_sampling)]
remain_prompts = input_prompts
remain_prompts = [(i, prompt) for i, prompt in enumerate(remain_prompts)]
end_prompts = []
max_func_call = 1 if args.prompt_type in ['cot', 'pal'] else 4
# stop words TODO: make it more general
stop_words = ["</s>"]
if args.prompt_type in ['cot']:
stop_words.extend(["\n\nQuestion:", "\n\nProblem:"])
if args.prompt_type in ['pal', 'tool-integrated', 'tora']:
stop_words.extend(["\n\n---", "```output"])
elif args.prompt_type in ['wizard_zs', 'platypus_fs']:
stop_words.extend(["Instruction", "Response"])
print("Stop words:", stop_words)
# start inference
# measure time use
start_time = time.time()
for epoch in range(max_func_call):
print("-" * 20, "Epoch", epoch)
current_prompts = remain_prompts
if len(current_prompts) == 0:
break
# get all outputs
prompts = [item[1] for item in current_prompts]
if args.use_vllm:
outputs = llm.generate(prompts, SamplingParams(
temperature=args.temperature,
top_p=args.top_p,
max_tokens=args.max_tokens_per_call,
n=1,
stop=stop_words,
))
outputs = sorted(outputs, key=lambda x: int(x.request_id)) # sort outputs by request_id
outputs = [output.outputs[0].text for output in outputs]
else:
outputs = generate_completions(
model=llm,
tokenizer=tokenizer,
prompts=prompts,
max_new_tokens=args.max_tokens_per_call,
batch_size=16,
stop_id_sequences=stop_words,
)
assert len(outputs) == len(current_prompts)
# process all outputs
remain_prompts = []
remain_codes = []
for (i, query), output in zip(current_prompts, outputs):
output = output.rstrip()
query += output
if args.prompt_type == "pal":
remain_prompts.append((i, query))
if "```python" in output:
output = extract_program(query)
remain_codes.append(output)
elif args.prompt_type == "cot":
end_prompts.append((i, query))
elif ("boxed" not in output and output.endswith("```")):
program = extract_program(query)
remain_prompts.append((i, query))
remain_codes.append(program)
else:
end_prompts.append((i, query))
# execute the remain prompts
remain_results = executor.batch_apply(remain_codes)
for k in range(len(remain_prompts)):
i, query = remain_prompts[k]
res, report = remain_results[k]
exec_result = res if res else report
if "pal" in args.prompt_type:
exec_result = "\\boxed{" + exec_result + "}"
exec_result = f"\n```output\n{exec_result}\n```\n"
query += exec_result
# not end
if epoch == max_func_call - 1:
query += "\nReach max function call limit."
remain_prompts[k] = (i, query)
# unsolved samples
print("Unsolved samples:", len(remain_prompts))
end_prompts.extend(remain_prompts)
# sort by idx
end_prompts = sorted(end_prompts, key=lambda x: x[0])
# remove input_prompt from end_prompt
codes = []
assert len(input_prompts) == len(end_prompts)
for i in range(len(input_prompts)):
_, end_prompt = end_prompts[i]
code = end_prompt.split(input_prompts[i])[-1].strip()
codes.append(code)
# extract preds
results = [run_execute(executor, code, args.prompt_type, data_name) for code in codes]
time_use = time.time() - start_time
# put results back to examples
all_samples = []
for i, sample in enumerate(samples):
code = codes[i*args.n_sampling: (i+1)*args.n_sampling]
result = results[i*args.n_sampling: (i+1)*args.n_sampling]
preds = [item[0] for item in result]
reports = [item[1] for item in result]
sample.pop('prompt')
sample.update({'code': code, 'pred': preds, 'report': reports})
all_samples.append(sample)
# add processed samples
all_samples.extend(processed_samples)
all_samples, result_json = evaluate(samples=all_samples, data_name=data_name, prompt_type=args.prompt_type, execute=True)
# save outputs
if len(processed_samples) < len(all_samples) and args.save_outputs:
save_jsonl(all_samples, out_file)
result_json['time_use_in_second'] = time_use
result_json['time_use_in_minite'] = f"{int(time_use // 60)}:{int(time_use % 60):02d}"
with open(out_file.replace(".jsonl", f"_{args.prompt_type}_metrics.json"), "w") as f:
json.dump(result_json, f, indent=4)
return result_json
if __name__ == "__main__":
args = parse_args()
set_seed(args.seed)
setup(args)