-
Notifications
You must be signed in to change notification settings - Fork 104
/
Copy pathpersam_video_f.py
367 lines (308 loc) · 15.7 KB
/
persam_video_f.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
import argparse, os
from PIL import Image
from os import path
import numpy as np
import torch
import torch.nn as nn
from torch.nn import functional as F
from torch.utils.data import DataLoader
from per_segment_anything import SamPredictor, sam_model_registry
from davis2017.davis import DAVISTestDataset, all_to_onehot
from eval_video import eval_davis_result
def main(args):
if args.eval:
eval_davis_result(args.output_path, args.davis_path)
return
# Traing paremeters
lr = args.lr
train_epochs = args.epoch
log_epochs = 25
# Dataset
print("Running on DAVIS", args.dataset_set)
test_dataset = DAVISTestDataset(args.davis_path, imset=args.dataset_set + '/val.txt')
test_loader = DataLoader(test_dataset, batch_size=1, shuffle=False, num_workers=1)
palette = Image.open(path.expanduser(os.path.join(args.davis_path, 'Annotations/480p/bike-packing/00000.png'))).getpalette()
# Load SAM
sam_type, sam_ckpt = 'vit_h', 'sam_vit_h_4b8939.pth'
sam = sam_model_registry[sam_type](checkpoint=sam_ckpt).cuda()
for name, param in sam.named_parameters():
param.requires_grad = False
predictor = SamPredictor(sam)
# Start eval
for iter, data in enumerate(test_loader):
rgb = data['rgb'].cpu().numpy()
msk = data['gt'][0].cpu().numpy()
info = data['info']
name = info['name'][0]
os.makedirs(args.output_path, exist_ok=True)
L = os.listdir(args.output_path)
print("Processing Object", name, "....")
if name in L:
print("File", name, "exists in", args.output_path, ", skip...")
continue
num_obj = len(info['labels'][0])
frame_num = rgb.shape[1]
save_path = args.output_path + '/{}/'.format(name)
os.makedirs(save_path, exist_ok=True)
first_frame_image = rgb[0, 0]
first_frame_mask = msk[:, 0] * args.exp
fore_feat_list = []
# Foreground features
input_boxes = []
for k in range(msk[:, 0].shape[0]):
input_boxes.append(msk[:, 0][k])
mask_weights_list = []
concat_mask = np.zeros((1, first_frame_mask.shape[1], first_frame_mask.shape[2]), dtype=np.uint8)
for obj in range(num_obj):
print("Processing Object", obj)
frame_image = first_frame_image
obj_mask = first_frame_mask[obj].reshape(first_frame_mask.shape[1], first_frame_mask.shape[2], 1) #(480, 910, 1)
obj_mask = np.concatenate((obj_mask, np.zeros((obj_mask.shape[0], obj_mask.shape[1], 2), dtype=obj_mask.dtype)), axis=2) #(480, 910, 3)
train_mask = torch.tensor(obj_mask)[:, :, 0] > 0
train_mask = train_mask.float().unsqueeze(0).repeat(1, 1, 1).flatten(1).cuda()
obj_mask = predictor.set_image(frame_image, obj_mask)
if obj == 0:
img_feat1 = predictor.features.squeeze().permute(1, 2, 0)
obj_mask = F.interpolate(obj_mask, size=img_feat1.shape[0:2], mode="bilinear")
obj_mask = obj_mask.squeeze()[0]
fore_feat = img_feat1[obj_mask > 0]
if fore_feat.shape[0] == 0:
fore_feat = fore_feat.mean(0)
print("Find a small object in", name, "Object", obj)
else:
fore_feat_mean = fore_feat.mean(0)
fore_feat_max = torch.max(fore_feat, dim=0)[0]
fore_feat = (fore_feat_max / 2 + fore_feat_mean / 2).unsqueeze(0)
fore_feat = fore_feat / fore_feat.norm(dim=-1, keepdim=True)
fore_feat_list.append(fore_feat)
# pred masks
test_feat = predictor.features.squeeze()
C, htest, wtest = test_feat.shape
test_feat = test_feat / test_feat.norm(dim=0, keepdim=True)
test_feat = test_feat.reshape(C, htest * wtest)
# Cosine similarity
sim = fore_feat @ test_feat
sim = sim.reshape(1, 1, htest, wtest)
sim = F.interpolate(sim, scale_factor=4, mode="bilinear")
mask_sim = predictor.model.postprocess_masks(
sim,
input_size=predictor.input_size,
original_size=predictor.original_size).squeeze()
w, h = mask_sim.shape
topk_xy_i, topk_label_i = point_selection(mask_sim, topk=args.topk)
topk_xy = topk_xy_i
topk_label = topk_label_i
if args.center:
topk_label = np.concatenate([topk_label, [1]], axis=0)
if args.box_prompt:
center, input_box_ = get_box_prompt(input_boxes[obj], args.threshold)
if args.center:
topk_xy = np.concatenate((topk_xy, center), axis=0)
# Learnable mask weights
mask_weights = Mask_Weights().cuda()
mask_weights.train()
num_params = 0
for name, param in mask_weights.named_parameters():
if param.requires_grad is True:
num_params += param.numel()
print('------------> Learnable Module:', name, str(param.numel() / 1e3) + 'K')
print('------------> Total Learnable Parameters:', str(num_params / 1e3) + 'K')
'''Fine-tuning'''
optimizer = torch.optim.AdamW(mask_weights.parameters(), lr=lr, eps=1e-4)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, train_epochs)
print('======> Start Training')
for train_idx in range(train_epochs):
masks, scores, logits, logits_high = predictor.predict(
point_coords=topk_xy,
point_labels=topk_label,
box=input_box_[None, :],
multimask_output=True)
logits_high = logits_high.flatten(1)
# weight
weight = torch.cat((1 - mask_weights.weights.sum(0).unsqueeze(0), mask_weights.weights), dim=0)
logits_high = logits_high * weight
logits_high = logits_high.sum(0).unsqueeze(0)
dice_loss = calculate_dice_loss(logits_high, train_mask)
focal_loss = calculate_sigmoid_focal_loss(logits_high, train_mask)
loss = dice_loss + focal_loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
scheduler.step()
if train_idx % log_epochs == 0:
print('Train Epoch: {:} / {:}'.format(train_idx, train_epochs))
current_lr = scheduler.get_last_lr()[0]
print('LR: {:.6f}, Dice_Loss: {:.4f}, Focal_Loss: {:.4f}'.format(current_lr, dice_loss.item(), focal_loss.item()))
mask_weights_list.append(mask_weights)
for i in range (1, frame_num):
current_img = rgb[0, i]
predictor.set_image(current_img)
test_feat = predictor.features.squeeze() #[256, 64, 64]
C, htest, wtest = test_feat.shape
test_feat = test_feat / test_feat.norm(dim=0, keepdim=True)
test_feat = test_feat.reshape(C, htest * wtest)
concat_mask = np.zeros((1, first_frame_mask.shape[1], first_frame_mask.shape[2]), dtype=np.uint8)
for j in range(min(len(fore_feat_list), len(input_boxes))):
mask_weights = mask_weights_list[j]
mask_weights.eval()
weight = torch.cat((1 - mask_weights.weights.sum(0).unsqueeze(0), mask_weights.weights), dim=0)
weight_np = weight.detach().cpu().numpy()
if i == 1:
print("Weight for Object", j, ":", weight_np)
# Cosine similarity
fore_feat = fore_feat_list[j]
sim = fore_feat @ test_feat # 1, h*w
sim = sim.reshape(1, 1, htest, wtest)
sim = F.interpolate(sim, scale_factor=4, mode="bilinear")
mask_sim = predictor.model.postprocess_masks(
sim,
input_size=predictor.input_size,
original_size=predictor.original_size).squeeze()
# Top-1 point selection
w, h = mask_sim.shape
topk_xy_i, topk_label_i = point_selection(mask_sim, topk=args.topk)
topk_xy = topk_xy_i
topk_label = topk_label_i
if args.center:
topk_label = np.concatenate([topk_label, [1]], axis=0)
if args.box_prompt:
center, input_box_ = get_box_prompt(input_boxes[j], args.threshold)
if args.center:
topk_xy = np.concatenate((topk_xy, center), axis=0)
masks, scores, logits, logits_high = predictor.predict(
point_coords=topk_xy,
point_labels=topk_label,
box=input_box_[None, :],
multimask_output=True)
# Weight
logits_high = logits_high * weight.unsqueeze(-1)
logit_high = logits_high.sum(0)
mask = (logit_high > 0).detach().cpu().numpy()
logits = logits * weight_np[..., None]
logit = logits.sum(0)
scores = scores * weight_np[0]
y, x = np.nonzero(mask)
if len(x) == 0 or len(y) == 0:
mask = masks[np.argmax(scores)]
y, x = np.nonzero(mask)
x_min = x.min()
x_max = x.max()
y_min = y.min()
y_max = y.max()
input_box = np.array([x_min, y_min, x_max, y_max])
masks, scores, logits, _ = predictor.predict(
point_coords=topk_xy,
point_labels=topk_label,
box=input_box[None, :],
mask_input=logit[None, :, :],
multimask_output=True)
ic_index = np.argmax(scores)
# box refine
y, x = np.nonzero(masks[ic_index])
x_min = x.min()
x_max = x.max()
y_min = y.min()
y_max = y.max()
input_box = np.array([x_min, y_min, x_max, y_max])
masks, scores, logits, _ = predictor.predict(
point_coords=topk_xy,
point_labels=topk_label,
box=input_box[None, :],
mask_input=logits[ic_index: ic_index + 1, :, :],
multimask_output=True,
return_logits=True)
ic_index = np.argmax(scores)
concat_mask = np.concatenate((concat_mask, masks[ic_index].reshape(1, masks.shape[1], masks.shape[2])), axis=0)
current_mask_pred = np.argmax(concat_mask, axis=0).astype(np.uint8)
output = Image.fromarray(current_mask_pred)
output.putpalette(palette)
output.save(save_path + '{:05d}.png'.format(i))
if args.box_prompt:
cur_labels = np.unique(current_mask_pred)
cur_labels = cur_labels[cur_labels!=0]
input_boxes = all_to_onehot(current_mask_pred, cur_labels)
print(f"Finish predict video: {name}")
eval_davis_result(args.output_path, args.davis_path)
def get_box_prompt(img, threshold):
rows = np.any(img, axis=1)
cols = np.any(img, axis=0)
rmin, rmax = np.where(rows)[0][[0, -1]]
cmin, cmax = np.where(cols)[0][[0, -1]]
cmin = 0 if cmin - threshold <= 0 else cmin - threshold
rmin = 0 if rmin - threshold <= 0 else rmin - threshold
cmax = img.shape[1] if cmax + threshold >= img.shape[1] else cmax + threshold
rmax = img.shape[0] if rmax + threshold >= img.shape[0] else rmax + threshold
return np.array([[(cmin + cmax) // 2, (rmin + rmax) // 2]]), np.array([cmin,rmin,cmax,rmax]) # x1,y1,x2,y2
class Mask_Weights(nn.Module):
def __init__(self):
super().__init__()
self.weights = nn.Parameter(torch.ones(2, 1, requires_grad=True) / 3)
def calculate_dice_loss(inputs, targets, num_masks = 1):
"""
Compute the DICE loss, similar to generalized IOU for masks
Args:
inputs: A float tensor of arbitrary shape.
The predictions for each example.
targets: A float tensor with the same shape as inputs. Stores the binary
classification label for each element in inputs
(0 for the negative class and 1 for the positive class).
"""
inputs = inputs.sigmoid()
inputs = inputs.flatten(1)
numerator = 2 * (inputs * targets).sum(-1)
denominator = inputs.sum(-1) + targets.sum(-1)
loss = 1 - (numerator + 1) / (denominator + 1)
return loss.sum() / num_masks
def calculate_sigmoid_focal_loss(inputs, targets, num_masks = 1, alpha: float = 0.25, gamma: float = 2):
"""
Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002.
Args:
inputs: A float tensor of arbitrary shape.
The predictions for each example.
targets: A float tensor with the same shape as inputs. Stores the binary
classification label for each element in inputs
(0 for the negative class and 1 for the positive class).
alpha: (optional) Weighting factor in range (0,1) to balance
positive vs negative examples. Default = -1 (no weighting).
gamma: Exponent of the modulating factor (1 - p_t) to
balance easy vs hard examples.
Returns:
Loss tensor
"""
prob = inputs.sigmoid()
ce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none")
p_t = prob * targets + (1 - prob) * (1 - targets)
loss = ce_loss * ((1 - p_t) ** gamma)
if alpha >= 0:
alpha_t = alpha * targets + (1 - alpha) * (1 - targets)
loss = alpha_t * loss
return loss.mean(1).sum() / num_masks
def point_selection(mask_sim, topk=1):
w, h = mask_sim.shape
topk_xy = mask_sim.flatten(0).topk(topk)[1]
topk_x = (topk_xy // h).unsqueeze(0)
topk_y = (topk_xy - topk_x * h)
topk_xy = torch.cat((topk_y, topk_x), dim=0).permute(1, 0)
topk_label = np.array([1] * topk)
topk_xy = topk_xy.cpu().numpy()
return topk_xy, topk_label
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--output_path", type=str, help="output path", required=True)
parser.add_argument('--davis_path', default='./DAVIS/2017')
parser.add_argument("--dataset_set", type=str, help="2017", default='2017')
parser.add_argument("--topk", type=int, help="choose topk points", default=1)
parser.add_argument("--epoch", type=int, help="epoch number", default=800)
parser.add_argument("--lr", type=float, help="learning rate", default=4e-4)
parser.add_argument("--exp", type=int, help="expand mask value to", default=215)
parser.add_argument("--threshold", type=int, help="the threshold for bounding box expansion", default=10)
parser.add_argument("--eval", action="store_true", help="eval only")
parser.add_argument("--box_prompt", action="store_true", help="whether use box prompt")
parser.add_argument("--large", action="store_true", help="whether choose largest mask for prompting after stage 1")
parser.add_argument("--center", action="store_true", help="whether prompt with center")
parser.set_defaults(box_prompt=True)
parser.set_defaults(large=True)
parser.set_defaults(center=True)
args = parser.parse_args()
print(args)
main(args)