forked from liziyie/scDVA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
plot_utils.R
818 lines (804 loc) · 40.4 KB
/
plot_utils.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
# Load packages -----------------
getPackage <- function(pkg, check = TRUE, load = TRUE, silent = FALSE, repos = "http://cran.us.r-project.org", github = NULL) {
if(check){
if(!suppressMessages(suppressWarnings(require(pkg, character.only = TRUE, quietly = TRUE)))){
if (is.null(github)){
try(install.packages(pkg, repos = repos), silent = TRUE)
}
else{
try(remotes::install_github(github))
}
}
}
if(load) suppressPackageStartupMessages(library(pkg, character.only = TRUE, quietly = TRUE))
if(load & !silent) message("Loaded ", pkg)
}
packages <- c("ggplot2", "png", "ggedit", "cowplot", "ggbeeswarm", "ggrepel", "corrplot", "grid", "RColorBrewer", "dplyr", "egg", "gtable", "scales", "reshape2")
lapply(packages, getPackage)
# Load functions----
source("./dataprepare_utils.R")
source("./data/color_panel.R")
# Embedding plot -----------------
DoEmbeddingPlot <- function(plot.data, genes,
color.by = "Genes", color.panel,
embedding.tag, embedding.used,
seperate.plot = TRUE, nrow = 2,
dot.size = 2, font.size = 15,
AI.friendly = FALSE) {
## Plot the tSNE scatter plot, cells could be colored by the gene expression,
## clusters, tissue, patient, treatment or day.
##
## Args:
#' @plot.data: The plot data created from getPlotData function.
#' @genes: The genes used in the plot.
#' @color.by: The cells should be colored by which, one of "Genes",
#' "Glbal_Cluster", "Sub_Cluster", "Sample", "Tissue", "Treatment", "Day",
#' "nGene" and "nUMI.
#' @color.panel: The color palette used when color by genes expression.
#' @embedding.tag: The embeddings' tag used, should be "Global" or "Sub".
#' @embedding.used: The embeddings used, should be "tSNE" or "UMAP".
#' @seperate.plot: Whether to plot all genes seperately.
#' @nrow: The row of final plot.
#' @dot.size: The size of point, default by 2.
#' @font.szie: The size of text, default by 15.
#' @AI.friendly: Whether to save an AI.friendly plot.
##
## Returns:
## A ggplot item.
x.axis <- sprintf("%s_%s_1", embedding.tag, embedding.used)
y.axis <- sprintf("%s_%s_2", embedding.tag, embedding.used)
if(color.by == "Genes"){ # Color by genes expression
if(color.panel %in% c("RdYlBu", "RdYlGn", "Spectral", "RdBu")){
myColorPalette <- colorRampPalette(rev(brewer.pal(8, color.panel)))
}else{
myColorPalette <- colorRampPalette(brewer.pal(8, color.panel))
}
if(seperate.plot){
plot.data <- melt(plot.data[,c(genes, x.axis, y.axis)], id.vars = c(x.axis, y.axis))
ggplot(plot.data %>% arrange(value), aes_string(x = x.axis, y = y.axis)) +
geom_point(aes(color = value), alpha = 0.8, size = dot.size) +
facet_wrap(~variable, nrow = nrow) +
labs(x = x.axis, y = y.axis) +
scale_colour_gradientn("Exp", colors = myColorPalette(100)) +
theme_cowplot(font_size = font.size) +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
strip.background = element_blank(), strip.text = element_text(size = font.size),
legend.position = "bottom", legend.justification = "center",
panel.border = element_rect(colour = "black")) +
guides(color = guide_colourbar(barwidth = 20, barheight = 1)) -> p
if(AI.friendly){
p <- ggAIplot.grid(p, "variable")
}
}else{
ggplot(plot.data %>% arrange(Expression), aes_string(x = x.axis, y = y.axis)) +
geom_point(aes(color = Expression), alpha = 0.8, size = dot.size) +
labs(x = x.axis, y = y.axis) +
scale_colour_gradientn("Exp", colors = myColorPalette(100)) +
theme_cowplot(font_size = font.size) +
theme(legend.position = "bottom",
legend.justification = "center") +
guides(color = guide_colourbar(barwidth = 20, barheight = 1)) -> p
if(AI.friendly){
p <- ggAIplot(p)
}
}
}else if(color.by %in% c("nGene","nUMI")){ # Color by nGene or nUMI
plot.data[,paste0("log2(",color.by,")")] <- log2(plot.data$color.by + 1)
myColorPalette <- colorRampPalette(rev(brewer.pal(8, "Spectral")))
ggplot(plot.data, aes_string(x = x.axis, y = y.axis)) +
geom_point(aes_string(color = paste0("log2(",color.by,")")), alpha = 0.8, size = dot.size) +
labs(x = x.axis, y = y.axis) +
scale_colour_gradientn(paste0("log2(",color.by,")"), colors = myColorPalette(100)) +
theme_cowplot(font_size = font.size) +
theme(legend.position = "bottom",
legend.justification = "center") +
guides(color = guide_colourbar(barwidth = 20, barheight = 1)) -> p
if(AI.friendly){
p <- ggAIplot(p)
}
}else{ # Color by cluster or other metadata
if(exists(paste0(color.by, "_color_panel"))){
color_panel <- get(paste0(color.by, "_color_panel"))
if(sum(!unique(plot.data[, color.by]) %in% names(color_panel)) > 0){
color_panel <- c68
}
}else{
color_panel <- c68
}
ggplot(plot.data, aes_string(x = x.axis, y = y.axis)) +
geom_point(aes_string(color = color.by), size = dot.size, alpha = 0.8) +
theme_cowplot(font_size = font.size) +
labs(x = x.axis, y = y.axis) +
scale_color_manual(values = color_panel) +
theme(legend.position = "top", legend.justification = "right") +
guides(color = guide_legend(title = NULL, nrow = 4, byrow = TRUE,
override.aes = list(size = 4))) -> p
if(AI.friendly){
p <- ggAIplot(p)
}
if (color.by %in% c("Global_Cluster", "Sub_Cluster")){
label_pos <-
aggregate(plot.data[, c(x.axis, y.axis)], list(plot.data[, color.by]),
median) %>% data.frame()
p <- p + geom_text_repel(data = label_pos,
aes_string(x = x.axis, y = y.axis, label = "Group.1"),
size = font.size / 3)
}
}
grid.newpage()
grid.draw(p)
}
# Distribution plot -----------------
DoDistributionPlot <- function(plot.data, genes, plot.type,
group.by = "Sub_Cluster", color.by, color.panel,
python.type = FALSE, seperate.plot = TRUE,
nrow = 2, font.size = 15, dot.size = 0.6, AI.friendly = FALSE) {
## Plot the gene distribution plot, cells could be grouped by clusters,
## tissue, patient, treatment or day and each group was colored by the mean expression
## in the group.
##
## Args:
#' @plot.data: The plot data created from getPlotData function.
#' @genes: The genes used in the plot.
#' @plot.type: Should be "Box Plot" or "Violin Plot" .
#' @group.by: The distribuion plot should be grouped by which column,
#' should be "Patient", "Tissue", "Treatment", "Day", "Sub_Cluster" or "Global_Cluster".
#' @color.by: The cells should be colored by which, one of "Exp",
#' "Glbal_Cluster", "Sub_Cluster", "Sample", "Tissue", "Treatment" and "Day".
#' @color.panel: The color palette used when color by genes expression.
#' @python.type: Plot a python-theme violin, only works when group.by is same as color.by.
#' @seperate.plot: Whether to plot all genes seperately.
#' @dot.size: The size of point, default by 1.
#' @font.szie: The size of text, default by 15.
#' @AI.friendly: Whether to save an AI.friendly plot.
##
## Returns:
## A ggplot item with the distribution plot in box or violin type.
if(color.by == "Exp"){
plot.data[,"Exp"] <- "A"
if (color.panel %in% c("RdYlBu", "RdYlGn", "Spectral", "RdBu")) {
myColorPalette <- colorRampPalette(rev(brewer.pal(8, color.panel)))
}else{
myColorPalette <- colorRampPalette(brewer.pal(8, color.panel))
}
}else{
if(exists(paste0(color.by, "_color_panel"))){
color_panel <- get(paste0(color.by, "_color_panel"))
if(sum(!unique(plot.data[, color.by]) %in% names(color_panel)) > 0){
color_panel <- c68
}
}else{
color_panel <- c68
}
}
plot.data <- plot.data[,unique(c("Expression", genes, group.by, color.by))]
plot.data <- melt(plot.data, id.vars = unique(c(group.by, color.by)))
if(group.by != color.by){
gene_mean <- aggregate(plot.data$value, list(plot.data[,group.by], plot.data[,color.by], plot.data$variable), mean)
colnames(gene_mean) <- c(group.by, color.by, "variable", "Mean")
gene_median <- aggregate(plot.data$value, list(plot.data[,group.by], plot.data[,color.by], plot.data$variable), median)
colnames(gene_median) <- c(group.by, color.by, "variable", "Median")
}else{
gene_mean <- aggregate(plot.data$value, list(plot.data[,group.by], plot.data$variable), mean)
colnames(gene_mean) <- c(group.by, "variable", "Mean")
gene_median <- aggregate(plot.data$value, list(plot.data[,group.by], plot.data$variable), median)
colnames(gene_median) <- c(group.by, "variable", "Median")
}
gene_median$Label <- round(gene_median$Median, 2)
plot.data <- merge(plot.data, gene_mean)
plot.data$inter <- interaction(plot.data[,group.by], plot.data[,color.by])
if(seperate.plot){
ggplot(plot.data %>% filter(variable != "Expression"), aes_string(x = group.by, y = "value")) +
labs(x = "", y = "Exp") +
theme_bw() +
theme(
axis.text.x = element_text(size = font.size * 0.8, angle = 90, vjust = 0.5, hjust = 1),
axis.text.y = element_text(size = font.size),
panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
strip.background = element_blank(), strip.text = element_text(size = font.size),
axis.title = element_blank(),
panel.border = element_rect(colour = "black")
) -> p
if(plot.type == "Box Plot"){
if(color.by == "Exp"){
p <- p +
geom_boxplot(outlier.size = -1, aes(color = Mean)) +
geom_quasirandom(cex = dot.size, width = 0.25, alpha = 0.5, aes(col = Mean), groupOnX = TRUE) +
geom_text(data = gene_median %>% filter(variable != "Expression"), aes_string(label = "Label", x = group.by, y = "Median"), size = 5, vjust = -0.5) +
scale_color_gradientn("Exp", colors = myColorPalette(100)) +
facet_wrap(~variable, nrow = nrow, scales = "free") +
guides(color = guide_colorbar(barwidth = 1, barheight = 12))
}else if(color.by == group.by){
p <- p +
geom_boxplot(outlier.size = -1, aes_string(color = color.by)) +
geom_quasirandom(cex = dot.size, width = 0.25, alpha = 0.5, aes_string(col = color.by), groupOnX = TRUE) +
geom_text(data = gene_median %>% filter(variable != "Expression"), aes_string(label = "Label", x = group.by, y = "Median"), size = 5, vjust = -0.5) +
scale_color_manual(values = color_panel) +
facet_wrap(~variable, nrow = nrow, scales = "free")
}else{
p <- p +
geom_boxplot(outlier.size = -1, aes_string(color = color.by)) +
geom_quasirandom(cex = dot.size, alpha = 0.5, aes_string(col = color.by), groupOnX = TRUE, varwidth = TRUE, dodge.width = 0.7) +
geom_text(data = gene_median %>% filter(variable != "Expression"), aes_string(label = "Label", x = group.by, y = "Median", group = color.by), size = 5, vjust = -0.5, position = position_dodge(.8)) +
scale_color_manual(values = color_panel) +
facet_wrap(~variable, nrow = nrow, scales = "free")
}
}else if(plot.type == "Violin Plot"){
if(color.by == "Exp"){
p <- p +
geom_violin(scale = "width", aes(fill = Mean), color = "white", kernel = "gaussian") +
geom_boxplot(outlier.size = -1, width = .1, fill = "white") +
geom_text(data = gene_median %>% filter(variable != "Expression"), aes_string(label = "Label", x = group.by, y = "Median"), size = 5, vjust = -0.5) +
scale_fill_gradientn("Exp", colors = myColorPalette(100)) +
facet_wrap(~variable, nrow = nrow, scales = "free") +
guides(fill = guide_colorbar(barwidth = 1, barheight = 12))
}else if(color.by == group.by){
p <- p +
geom_violin(scale = "width", aes_string(fill = color.by), color = "white", kernel = "gaussian") +
geom_boxplot(outlier.size = -1, width = .1, fill = "white") +
geom_text(data = gene_median %>% filter(variable != "Expression"), aes_string(label = "Label", x = group.by, y = "Median"), size = 5, vjust = -0.5) +
scale_fill_manual(values = color_panel) +
facet_wrap(~variable, nrow = nrow, scales = "free")
if(python.type){
p <-
ggplot(plot.data %>% filter(variable != "Expression"), aes(x = variable, y = value)) +
geom_violin(scale = "width", aes_string(fill = color.by), color = "white", kernel = "gaussian") +
facet_grid(as.formula(paste(group.by, "~.")), switch = "y", scales = "free_y") +
scale_fill_manual(values = color_panel) +
theme_cowplot(font_size = 15) +
scale_y_continuous(position = "right") +
theme(legend.position = "null",
axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1),
axis.title = element_blank(),
panel.spacing = unit(0.05, "lines"),
panel.border = element_rect(colour = "black", fill=NA, size = .75),
strip.background =element_rect(fill="white"),
strip.text.y = element_text(angle = 180, vjust = 0.5, hjust = 1))
}
}else{
p <- p +
geom_violin(scale = "width", aes_string(fill = color.by), color = "white", kernel = "gaussian", position = position_dodge(width = 1)) +
geom_boxplot(aes(group = inter), width = 0.1, fill = "white", position = position_dodge(width = 1), outlier.shape = NA) +
geom_text(data = gene_median %>% filter(variable != "Expression"), aes_string(label = "Label", x = group.by, y = "Median", group = color.by), size = 5, vjust = -0.5, position = position_dodge(.8)) +
scale_fill_manual(values = color_panel) +
facet_wrap(~variable, nrow = nrow, scales = "free")
}
}
}else{
ggplot(plot.data %>% filter(variable == "Expression"), aes_string(x = group.by, y = "value")) +
labs(x = "", y = "Exp") +
theme_bw() +
theme(
axis.text.x = element_text(size = font.size * 0.8, angle = 45, hjust = 1),
axis.text.y = element_text(size = font.size),
panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
strip.background = element_blank(), strip.text = element_text(size = font.size),
axis.title = element_blank(),
panel.border = element_rect(colour = "black")
) -> p
if(plot.type == "Box Plot"){
if(color.by == "Exp"){
p <- p +
geom_boxplot(outlier.size = -1, aes(color = Mean)) +
geom_quasirandom(cex = dot.size, width = 0.25, alpha = 0.5, aes(col = Mean), groupOnX = TRUE) +
geom_text(data = gene_median %>% filter(variable == "Expression"), aes_string(label = "Label", x = group.by, y = "Median"), size = 5, vjust = -0.5) +
scale_color_gradientn("Exp", colors = myColorPalette(100)) +
guides(color = guide_colorbar(barwidth = 1, barheight = 12))
}else if(color.by == group.by){
p <- p +
geom_boxplot(outlier.size = -1, aes_string(color = color.by)) +
geom_quasirandom(cex = dot.size, width = 0.25, alpha = 0.5, aes_string(col = color.by), groupOnX = TRUE) +
geom_text(data = gene_median %>% filter(variable == "Expression"), aes_string(label = "Label", x = group.by, y = "Median"), size = 5, vjust = -0.5) +
scale_color_manual(values = color_panel)
}else{
p <- p +
geom_boxplot(outlier.size = -1, aes_string(color = color.by)) +
geom_quasirandom(cex = dot.size, alpha = 0.5, aes_string(col = color.by), groupOnX = TRUE, varwidth = TRUE, dodge.width = 0.7) +
geom_text(data = gene_median %>% filter(variable == "Expression"), aes_string(label = "Label", x = group.by, y = "Median", group = color.by), size = 5, vjust = -0.5, position = position_dodge(.8)) +
scale_color_manual(values = color_panel)
}
}else if(plot.type == "Violin Plot"){
if(color.by == "Exp"){
p <- p +
geom_violin(scale = "width", aes(fill = Mean), color = "white", kernel = "gaussian") +
geom_boxplot(outlier.size = -1, width = .1, fill = "white") +
geom_text(data = gene_median %>% filter(variable == "Expression"), aes_string(label = "Label", x = group.by, y = "Median"), size = 5, vjust = -0.5) +
scale_fill_gradientn("Exp", colors = myColorPalette(100)) +
guides(fill = guide_colorbar(barwidth = 1, barheight = 12))
}else if(color.by == group.by){
p <- p +
geom_violin(scale = "width", aes_string(fill = color.by), color = "white", kernel = "gaussian") +
geom_boxplot(outlier.size = -1, width = .1, fill = "white") +
geom_text(data = gene_median %>% filter(variable == "Expression"), aes_string(label = "Label", x = group.by, y = "Median"), size = 5, vjust = -0.5) +
scale_fill_manual(values = color_panel)
}else{
p <- p +
geom_violin(scale = "width", aes_string(fill = color.by), color = "white", kernel = "gaussian", position = position_dodge(width = 1)) +
geom_boxplot(aes(group = inter), width = 0.1, fill = "white", position = position_dodge(width = 1), outlier.shape = NA) +
geom_text(data = gene_median %>% filter(variable == "Expression"), aes_string(label = "Label", x = group.by, y = "Median", group = color.by), size = 5, vjust = -0.5, position = position_dodge(.8)) +
scale_fill_manual(values = color_panel)
}
}
}
return(p)
}
# Significance plot -----------------
DoSignificancePlot <- function(plot.data, group.by, per.cutoff,
font.size, sig.level = 0) {
## Plot the gene differentially expressed pattern using a correlation plot.
##
## Args:
#' @plot.data: The plot data created from getPlotData function.
#' @group.by: The distribuion plot should be grouped by which column,
#' should be "Patient", "Tissue", "Treatment", "Day", "Sub_Cluster" or "Global_Cluster".
#' @per.cutoff: The cutoff of a gene seen as expressed in the cells.
#' @font.size: The character size showing the log2 fold change.
#' @sig.level: The p-value cutoff as significant.
##
## Returns:
## A correlation style plot.
CorrList <- getSigData(plot.data, group.by, per.cutoff)
if(!is.null(CorrList)){
corrplot(
corr = CorrList$percentage, p.mat = CorrList$pvalue,
method = "pie", outline = "white", col = "lightblue", addgrid.col = NA,
type = "upper", tl.pos = "n", cl.pos = "n", insig = "blank"
)
corrplot(
corr = CorrList$coeff, p.mat = CorrList$pvalue,
add = TRUE, method = "color", is.corr = F, type = "lower",
addCoef.col = "black", number.cex = font.size,
tl.cex = font.size, tl.pos = "ld", tl.srt = 45, tl.offset = 1, cl.pos = "n",
diag = F, insig = "blank", sig.level = sig.level,
col = rev(brewer.pal(n = 8, name = "RdYlBu"))
)
}
}
# Heatmap plot -----------------
DoHeatmapPlot <- function(plot.data, genes, group.by, color.panel, font.size = 15){
## Do the geneset heatmap plot.
##
## Args:
#' @plot.data: The plot data created from getPlotData function.
#' @genes: The genes used in the plot.
#' @group.by: The cells should be ordered by or grouped by.
#' @color.panel: The color palette used when color by genes expression.
#' @font.size: The size of text, default by 15.
##
## Returns:
## A heatmap plot.
if(length(genes) > 1){
expression.matrix <- t(plot.data[, genes])
genes <- genes[rowSums(expression.matrix) != 0]
expression.matrix <- expression.matrix[rowSums(expression.matrix) != 0, ]
groupid <- factor(plot.data[, group.by])
if(length(unique(groupid)) > 1){
# Boxplot in the left panel
signature.mean.expression <- colMeans(expression.matrix[genes,])
boxplot.data <- data.frame(Expression = signature.mean.expression, Group = groupid)
p_boxplot <-
ggplot(boxplot.data, aes(x = Group, y = Expression)) +
geom_boxplot(color = "#1979B5", fill = "#1979B5",
outlier.colour = "black", outlier.shape = 1) +
theme_bw() +
theme(legend.position = "NULL",
axis.text.y = element_text(size = font.size * 0.8),
axis.text.x = element_text(size = font.size),
axis.title = element_blank()) +
scale_x_discrete(limits = rev(levels(as.factor(groupid)))) +
coord_flip()
dat <- ggplot_build(p_boxplot)$data[[1]]
dat$xsp <- 1/2 * (dat$xmax + dat$xmin) - 1/4 * (dat$xmax - dat$xmin)
dat$xep <- 1/2 * (dat$xmax + dat$xmin) + 1/4 * (dat$xmax - dat$xmin)
p_boxplot <-
p_boxplot +
geom_segment(data = dat, aes(x = xmin, xend = xmax, y = middle, yend = middle), colour = "#2BA147", size = 2) +
geom_segment(data = dat, aes(x = xsp, xend = xep, y = ymin, yend = ymin), colour = "black", size = 2) +
geom_segment(data = dat, aes(x = xsp, xend = xep, y = ymax, yend = ymax), colour = "black", size = 2)
# Heatmap in the right panel
if (color.panel %in% c("RdYlBu", "RdYlGn", "Spectral", "RdBu")) {
myColorPalette <- colorRampPalette(rev(brewer.pal(8, color.panel)))
}else{
myColorPalette <- colorRampPalette(brewer.pal(8, color.panel))
}
gene.median.expression <- aggregate(t(expression.matrix[genes,]), list(Group = groupid), mean)
gene.median.expression[, 2:(length(genes) + 1)] <- apply(gene.median.expression[, 2:(length(genes) + 1)], 2, function(x){
(x - mean(x))/sd(x)
})
heatmap.data <- reshape2::melt(gene.median.expression, id = "Group")
heatmap.data$Group <- as.factor(heatmap.data$Group)
heatmap.data$Group <- factor(heatmap.data$Group, levels = rev(levels(heatmap.data$Group)))
max_value <- round(max(abs(heatmap.data$value)) + 0.05, 1)
scale_breaks <- round(max_value * c(-4/5, -2/5, 0, 2/5, 4/5), 1)
p_heatmap <- ggplot(heatmap.data, aes(x = factor(variable), y = Group)) +
geom_tile(aes(fill = value), colour = "white") +
theme_bw() +
theme(panel.border = element_blank(),
legend.title = element_blank(),
axis.line = element_blank(),
axis.text.y = element_blank(),
axis.text.x = element_text(angle = 90, vjust = 0.5,
hjust = 1, size = font.size * 0.8),
axis.title = element_blank(),
axis.ticks = element_blank()) +
scale_fill_gradientn(limits = c(-max_value, max_value), breaks = scale_breaks, expand = c(0,0), colours = myColorPalette(100), guide = guide_colourbar(label.theme = element_text(size = font.size * 0.5))) +
scale_x_discrete(breaks = unique(heatmap.data$variable), labels = unique(heatmap.data$variable)) +
scale_y_discrete(expand = c(0,0))
gt = ggplotGrob(p_heatmap)
leg = gtable_filter(gt, "guide-box")
leg[[1]][[1]][[1]][[1]][[1]][[2]]$height = unit(1, "npc")
pos = unit.c(unit(0.01,"npc"), unit(.25, "npc"), unit(.5, "npc"), unit(.75, "npc"), unit(.99, "npc"))
leg[[1]][[1]][[1]][[1]][[1]][[5]]$y0 = pos
leg[[1]][[1]][[1]][[1]][[1]][[5]]$y1 = pos
leg[[1]][[1]][[1]][[1]]$heights = unit.c(rep(unit(0, "mm"), 3),
unit(1, "npc"),
unit(0, "mm"))
leg[[1]][[1]]$heights[[3]] = sum(rep(unit(0, "mm"), 3),
unit(1, "npc"),
unit(0, "mm"))
if(strsplit(as.character(packageVersion("ggplot2")),"[.]")[[1]][1] == "2"){
# ggplot 2.0
leg[[1]][[1]][[1]][[1]][[1]][[3]]$y = pos
p_heatmap = gtable_add_grob(gt, leg, t = 6, l = 8)
}else if(strsplit(as.character(packageVersion("ggplot2")),"[.]")[[1]][1] == "3"){
# ggplot 3.0
leg[[1]][[1]][[1]][[1]][[1]][[3]]$children[[1]]$y = pos
p_heatmap = gtable_add_grob(gt, leg, t = 7, l = 9)
}
# Final plot
g1 <- ggplotGrob(p_boxplot)
g2 <- p_heatmap
fg1 <- gtable_frame(g1, height = unit(10, "null"))
fg2 <- gtable_frame(g2, height = unit(40, "null"))
p <- gtable_frame(gtable_cbind(fg1, fg2))
grid.newpage()
grid.draw(p)
} else{
ggplot(data.frame()) +
ggtitle("There should be more than two groups") +
theme_bw() +
theme(plot.title = element_text(
size = 26,
face = "bold",
hjust = 0.5)
)
}
}else{
ggplot(data.frame()) +
ggtitle("There should be more than two genes") +
theme_bw() +
theme(plot.title = element_text(
size = 26,
face = "bold",
hjust = 0.5
))
}
}
# In-silico FACS plot -----------------
DoISFACSPlot <- function(plot.data, genes, color.by, color.panel,
dot.size = -1, x.cutoff = 1, y.cutoff = 1,
font.size = 15, AI.friendly = FALSE){
## Plot a in-silico FACS plot with two genes, users could set the cutoff of
## x and y axis (gate) manually.
##
## Args:
#' @plot.data: The plot data created from getPlotData function.
#' @genes: The genes used in the plot, must be a vector with only two items.
#' @color.by: The point was colored by "None", "Glbal_Cluster", "Sub_Cluster",
#' "Sample", "Tissue", "Treatment" and "Day".
#' @color.panel: The color palette used when color by genes expression.
#' @dot.size: The size of point, default by -1, not showing the point.
#' @x.cutoff: The cutoff of x axis.
#' @y.cutoff: The cutoff of y axis.
#' @font.szie: The size of text, default by 15.
#' @AI.friendly: Whether to save an AI.friendly plot.
##
## Returns:
## A ggplot item with the in-silico FACS plot.
if(color.panel %in% c("RdYlBu", "RdYlGn", "Spectral", "RdBu")) {
myColorPalette <- colorRampPalette(rev(brewer.pal(8, color.panel)))
}else{
myColorPalette <- colorRampPalette(brewer.pal(8, color.panel))
}
if(color.by != "None"){
if(exists(paste0(color.by, "_color_panel"))){
color_panel <- get(paste0(color.by, "_color_panel"))
if(sum(!unique(plot.data[, color.by]) %in% names(color_panel)) > 0){
color_panel <- c68
}
}else{
color_panel <- c68
}
}
if(length(genes) == 2){
gene.A <- genes[1]
gene.B <- genes[2]
G4.num <- c(
sum(plot.data[,gene.A] <= x.cutoff & plot.data[,gene.B] > y.cutoff),
sum(plot.data[,gene.A] <= x.cutoff & plot.data[,gene.B] <= y.cutoff),
sum(plot.data[,gene.A] > x.cutoff & plot.data[,gene.B] > y.cutoff),
sum(plot.data[,gene.A] > x.cutoff & plot.data[,gene.B] <= y.cutoff)
)
G4.per <- round(G4.num / nrow(plot.data) * 100,2)
G4.text <- data.frame(
X = rep(c(x.cutoff / 2, (max(plot.data[,gene.A]) + x.cutoff + 0.5) / 2), each = 2),
Y = rep(c(max(plot.data[,gene.B]) - 0.5, y.cutoff - 0.5),2),
group = paste0("Grp", 1:4, " : ", gene.A, c("-","-","+","+"), gene.B, c("+","-","+","-")),
text = paste0(G4.per,"% (",G4.num,"|",nrow(plot.data),")"))
if(color.by == "None"){
ggplot(plot.data, aes_string(x = gene.A, y = gene.B)) +
geom_point(color = "gray", alpha = 0.8, size = dot.size) +
scale_x_continuous(expand = c(0, 0), limits = c(0, max(plot.data[,gene.A]) + 0.5)) +
scale_y_continuous(expand = c(0, 0), limits = c(0, max(plot.data[,gene.B]) + 0.5)) +
theme_bw() +
theme(
axis.text = element_text(size = font.size * 0.8),
axis.title = element_text(size = font.size),
legend.text = element_text(size = font.size * 0.8),
legend.title = element_text(size = font.size * 0.8)
) -> pmain
if(AI.friendly){
pmain <- ggAIplot(pmain)
}
pmain <- pmain +
stat_density_2d(aes(fill = stat(level), alpha = stat(level)), geom = "polygon") +
scale_alpha(range = c(0.6,1)) +
scale_fill_gradientn(colours = myColorPalette(100)) +
geom_hline(yintercept = y.cutoff, linetype = "dashed") +
geom_vline(xintercept = x.cutoff, linetype = "dashed") +
geom_text(data = G4.text, aes(x = X, y = Y, label = paste0(group ,"\n",text)), size = font.size * 0.3) +
guides(alpha = FALSE, fill = FALSE)
xdens <- axis_canvas(pmain, axis = "x") +
geom_density(data = plot.data, aes_string(x = gene.A), fill = "gray",
color = NA, alpha = 0.7, size = 0.2)
p0 <- insert_xaxis_grob(pmain, xdens, grid::unit(.2, "null"), position = "top")
ydens <- axis_canvas(pmain, axis = "y", coord_flip = TRUE)+
geom_density(data = plot.data, aes_string(x = gene.B), fill = "gray",
color = NA, alpha = 0.7, size = 0.2) +
coord_flip()
p <- insert_yaxis_grob(p0, ydens, grid::unit(.2, "null"), position = "right")
}
else{
ggplot(plot.data, aes_string(x = gene.A, y = gene.B)) +
geom_point(aes_string(color = color.by, group = color.by), alpha = 0.8, size = dot.size) +
scale_color_manual("", values = color_panel) +
guides(color = guide_legend(override.aes = list(fill = NA, nrow = 4, byrow = TRUE, size = 4, linetype = 0))) +
scale_x_continuous(expand = c(0, 0), limits = c(0, max(plot.data[,gene.A]) + 0.5)) +
scale_y_continuous(expand = c(0, 0), limits = c(0, max(plot.data[,gene.B]) + 0.5)) +
theme_bw() +
theme(
axis.text = element_text(size = font.size * 0.8),
axis.title = element_text(size = font.size),
legend.text = element_text(size = font.size * 0.8),
legend.title = element_text(size = font.size * 0.8)
) -> pmain
if(AI.friendly){
pmain <- ggAIplot(pmain)
}
pmain <- pmain +
stat_density_2d(aes(fill = stat(level), alpha = stat(level)), geom = "polygon") +
scale_alpha(range = c(0.6,1)) +
scale_fill_gradientn(colours = myColorPalette(100)) +
geom_hline(yintercept = y.cutoff, linetype = "dashed") +
geom_vline(xintercept = x.cutoff, linetype = "dashed") +
geom_text(data = G4.text, aes(x = X, y = Y, label = paste0(group ,"\n",text)), size = font.size * 0.3) +
guides(alpha = FALSE, fill = FALSE)
xdens <- axis_canvas(pmain, axis = "x") +
geom_density(data = plot.data,
aes_string(x = gene.A, fill = color.by),
color = NA, alpha = 0.7, size = 0.2) +
scale_fill_manual(values = color_panel)
p0 <- insert_xaxis_grob(pmain, xdens, grid::unit(.2, "null"), position = "top")
ydens <- axis_canvas(pmain, axis = "y", coord_flip = TRUE) +
geom_density(data = plot.data,
aes_string(x = gene.B, fill = color.by),
color = NA, alpha = 0.7, size = 0.2) +
coord_flip() +
scale_fill_manual(values = color_panel)
p <- insert_yaxis_grob(p0, ydens, grid::unit(.2, "null"), position = "right")
}
grid.newpage()
grid.draw(p)
}else{
ggplot(data.frame()) +
ggtitle("There should be two genes as input!") +
theme_bw() +
theme(plot.title = element_text(size = 26, face = "bold", hjust = 0.5))
}
}
DoISFACSVolcanoPlot <- function(limma.data, dot.size = 1, adj.P.Val.cutoff = 0.05,
logFC.cutoff = 0.5, ngenes.labeled = 25,
font.size = 15, AI.friendly = FALSE){
## Plot a in-silico FACS plot with two genes, users could set the cutoff of
## x and y axis (gate) manually.
##
## Args:
#' @limma.data: The plot data created from getLIMMAData function.
#' @dot.size: The size of point, default by 1.
#' @adj.P.Val.cutoff: The cutoff of adjusted p-value to define significant genes.
#' @logFC.cutoff: The cutoff of log fold change to define significant genes.
#' @ngenes.labeled: The number of genes with gene symbol labeled, ordered by the
#' log fold change.
#' @font.szie: The size of text, default by 15.
#' @AI.friendly: Whether to save an AI.friendly plot.
##
## Returns:
## A ggplot item with the volcano plot.
if(is.null(limma.data$Warning)){
limma.data$Sig <- abs(limma.data$logFC) >= logFC.cutoff & limma.data$adj.P.Val < adj.P.Val.cutoff
limma.data.genes_labeled <- c(order(limma.data$logFC)[1:ngenes.labeled], order(-limma.data$logFC)[1:ngenes.labeled])
limma.data[limma.data.genes_labeled, "label"] <- limma.data[limma.data.genes_labeled, "Symbol"]
limma.data$adj.P.Val[limma.data$adj.P.Val == 0] <- min(limma.data$adj.P.Val[limma.data$adj.P.Val > 0])
p <- ggplot(limma.data, aes(x = logFC, y = -log10(adj.P.Val))) +
geom_point(aes(color = Sig), size = dot.size) +
scale_color_manual(values = Binomial_color_panel) +
labs(x = "log2 fold change", y = "-log10 adj p-value") +
theme_cowplot(font_size = font.size) +
theme(legend.position = "none")
if(AI.friendly){
p <- ggAIplot(p)
}
p <- p +
geom_vline(xintercept = c(-logFC.cutoff, logFC.cutoff), color = "grey", linetype = "dashed", lwd = 1) +
geom_text_repel(data = limma.data, aes(label = label), size = font.size / 3)
return(p)
}else{
ggplot(data.frame()) +
ggtitle(limma.data$Warning) +
theme_bw() +
theme(plot.title = element_text(size = 26, face = "bold", hjust = 0.5))
}
}
# Metadata plot -----------------
DoMetadataPlot <- function(plot.data, plot.type, group.by1, color.by, group.by2, quantify = "Proportion", coord.flip = TRUE, show.cutoff = 10, nrow = 2, font.size = 15) {
## Plot the cluster, patient or tissue proportion using bar plot.
##
## Args:
#' @plot.data: The plot data created from getPlotData function.
#' @plot.type: Should be "Bar Plot" or "Pie Plot".
#' @group.by1: The xlab of the metadata plot. One of "Sub_Cluster",
#' "Global_Cluster", "Day", "Treatment", "Patient" or "Tissue".
#' @color.by: The color of each part in the metadata plot. One of "Sub_Cluster",
#' "Global_Cluster", "Day", "Treatment", "Patient" or "Tissue".
#' @group.by2: The metadata plot should be facet by which. One of "None",
#' "Sub_Cluster", "Global_Cluster", "Day", "Treatment", "Patient" or "Tissue".
#' @quantify: "Proportion" or "Count", default by "Proportion".
#' @coord.flip: Whether to inverse the x axis and y axis, default by TRUE.
#' @show.cutoff: The minimum proportions to be shown in the pie plot.
#' @nrow: The row of facet bar plot or pie plot, default by 2.
#' @font.size: The font size, default by 15.
##
## Returns:
## A ggplot item with the metadata plot in bar plot or pie plot.
if(exists(paste0(color.by, "_color_panel"))){
color_panel <- get(paste0(color.by, "_color_panel"))
if(sum(!unique(plot.data[, color.by]) %in% names(color_panel)) > 0){
color_panel <- c68
}
}else{
color_panel <- c68
}
if(plot.type == "Bar Plot"){
if(quantify == "Proportion"){
ggplot(plot.data, aes_string(x = group.by1, fill = color.by)) +
geom_bar(position = "fill", alpha = .8, color = "white") +
scale_fill_manual(values = color_panel) +
labs(y = "Percentage", x = "") +
guides(fill = guide_legend(ncol = 4)) +
theme_cowplot(font_size = font.size) +
theme(legend.position = "bottom", legend.justification = "right") -> p
}else{
ggplot(plot.data, aes_string(x = group.by1, fill = color.by)) +
geom_histogram(stat = "count", alpha = .8, color = "white") +
scale_fill_manual(values = color_panel) +
labs(y = "Number of cells", x = "") +
guides(fill = guide_legend(ncol = 4)) +
theme_cowplot(font_size = font.size) +
theme(legend.position = "bottom", legend.justification = "right") -> p
}
if(group.by2 != "None"){
p <- p + facet_wrap(as.formula(paste0("~", group.by2)), nrow = nrow)
}
if(coord.flip){
p <- p + coord_flip()
}else{
p <- p + theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1))
}
}else if(plot.type == "Pie Plot"){
pie_df <- list()
for(i in levels(factor(plot.data[,group.by1]))){
pie_df[[i]] <- plot.data[plot.data[,group.by1] == i,] %>% select(color.by) %>% table() %>% data.frame()
colnames(pie_df[[i]]) <- c("group","value")
pie_df[[i]]$value <- round(pie_df[[i]]$value / sum(pie_df[[i]]$value) * 100, 2)
pie_df[[i]]$facet.by <- i
pie_df[[i]] <- cbind(pie_df[[i]], y_height = pie_df[[i]]$value/2 + c(0, cumsum(pie_df[[i]]$value)[-length(pie_df[[i]]$value)]))
pie_df[[i]]$y_height[which(pie_df[[i]]$value <= show.cutoff)] <- NA
}
pie_df_all <- do.call(rbind, pie_df)
ggplot(pie_df_all, aes(x = "", y = value, fill = group)) +
geom_bar(alpha = .8, width = 1, stat = "identity",
position = position_stack(reverse = TRUE)) +
scale_fill_manual(color.by, values = color_panel) +
guides(fill = guide_legend(ncol = 3)) +
coord_polar("y", start = 0) +
geom_text(aes(y = y_height, label = value), size = font.size * 0.3, na.rm = TRUE) +
facet_wrap(~facet.by, nrow = 2) +
theme_void() +
theme(
legend.position = "bottom",
legend.justification = "right",
strip.text = element_text(size = font.size * 0.8),
legend.title = element_text(size = font.size * 0.8),
legend.text = element_text(size = font.size * 0.8)
) -> p
}
return(p)
}
# AI friendly plot----
gg0point <- function(plot){
newLayer <- cloneLayer(plot$layers[[1]])
newLayer$aes_params$size <- -1
newplot <- plot %>% rgg("point", 1, newLayer)
return(newplot)
}
MyTheme_transparent <- theme(
panel.background = element_rect(fill = "transparent"), # bg of the panel
plot.background = element_rect(fill = "transparent", color = NA), # bg of the plot
panel.grid.major = element_blank(), # get rid of major grid
panel.grid.minor = element_blank(), # get rid of minor grid
legend.background = element_rect(fill = "transparent"), # get rid of legend bg
legend.box.background = element_rect(fill = "transparent"), # get rid of legend panel bg
legend.key = element_rect(fill = "transparent", colour = NA), # get rid of key legend fill, and of the surrounding
axis.line = element_line(colour = "black") # adding a black line for x and y axis
)
ggAIplot <- function(plot, calibration = c(0,0,0,0), width = 10, height = 10, dpi = 300){
plot.png <- plot + theme_nothing() + MyTheme_transparent
ggsave(plot.png, filename = "./tmp/temp.png", width = width, height = height, dpi = dpi, bg = "transparent")
img <- readPNG("./tmp/temp.png")
file.remove("./tmp/temp.png")
blank.plot <- gg0point(plot)
range.values <- c(
ggplot_build(plot = blank.plot)$layout$panel_params[[1]]$x.range,
ggplot_build(plot = blank.plot)$layout$panel_params[[1]]$y.range
)
plot.pdf <- blank.plot +
annotation_raster(img,
xmin = range.values[1] + calibration[1],
xmax = range.values[2] + calibration[2],
ymin = range.values[3] + calibration[3],
ymax = range.values[4] + calibration[4])
return(plot.pdf)
}
annotation_raster.grid <-
function (raster, xmin, xmax, ymin, ymax, interpolate = FALSE, data) {
raster <- grDevices::as.raster(raster)
layer(data = data, mapping = NULL, stat = StatIdentity,
position = PositionIdentity, geom = GeomRasterAnn, inherit.aes = FALSE,
params = list(raster = raster, xmin = xmin, xmax = xmax,
ymin = ymin, ymax = ymax, interpolate = interpolate))
}
ggAIplot.grid <- function(plot, facet.by, calibration = c(0,0,0,0), width = 10, height = 10, dpi = 300){
plot.data <- plot$data
plot.pdf <- gg0point(plot)
range.values <- c(
ggplot_build(plot = plot.pdf)$layout$panel_params[[1]]$x.range,
ggplot_build(plot = plot.pdf)$layout$panel_params[[1]]$y.range
)
for(variable in unique(plot.data[,facet.by])){
temp.plot.png <- plot + theme_nothing() + MyTheme_transparent
temp.plot.png$data <- temp.plot.png$data[temp.plot.png$data[,facet.by] == variable,]
ggsave(temp.plot.png, filename = "./tmp/temp.png", width = width, height = height, dpi = dpi, bg = "transparent")
img <- readPNG("./tmp/temp.png")
file.remove("./tmp/temp.png")
ggimg <- annotation_raster.grid(
img,
xmin = range.values[1] + calibration[1],
xmax = range.values[2] + calibration[2],
ymin = range.values[3] + calibration[3],
ymax = range.values[4] + calibration[4],
data = temp.plot.png$data[1, ]
)
plot.pdf <- plot.pdf + ggimg
}
return(plot.pdf)
}