-
Notifications
You must be signed in to change notification settings - Fork 1.5k
/
Copy pathdeploy_api.py
369 lines (316 loc) · 11.6 KB
/
deploy_api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
from fastapi import FastAPI, UploadFile, Form, File
from hivision import IDCreator
from hivision.error import FaceError
from hivision.creator.layout_calculator import (
generate_layout_array,
generate_layout_image,
)
from hivision.creator.choose_handler import choose_handler
from hivision.utils import (
add_background,
resize_image_to_kb,
bytes_2_base64,
base64_2_numpy,
hex_to_rgb,
add_watermark,
save_image_dpi_to_bytes,
)
import numpy as np
import cv2
from starlette.middleware.cors import CORSMiddleware
from starlette.formparsers import MultiPartParser
# 设置Starlette表单字段大小限制
MultiPartParser.max_part_size = 10 * 1024 * 1024 # 10MB
# 设置Starlette文件上传大小限制
MultiPartParser.max_file_size = 20 * 1024 * 1024 # 20MB
app = FastAPI()
creator = IDCreator()
# 添加 CORS 中间件 解决跨域问题
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # 允许的请求来源
allow_credentials=True, # 允许携带 Cookie
allow_methods=[
"*"
], # 允许的请求方法,例如:GET, POST 等,也可以指定 ["GET", "POST"]
allow_headers=["*"], # 允许的请求头,也可以指定具体的头部
)
# 证件照智能制作接口
@app.post("/idphoto")
async def idphoto_inference(
input_image: UploadFile = File(None),
input_image_base64: str = Form(None),
height: int = Form(413),
width: int = Form(295),
human_matting_model: str = Form("modnet_photographic_portrait_matting"),
face_detect_model: str = Form("mtcnn"),
hd: bool = Form(True),
dpi: int = Form(300),
face_align: bool = Form(False),
head_measure_ratio: float = Form(0.2),
head_height_ratio: float = Form(0.45),
top_distance_max: float = Form(0.12),
top_distance_min: float = Form(0.10),
brightness_strength: float = Form(0),
contrast_strength: float = Form(0),
sharpen_strength: float = Form(0),
saturation_strength: float = Form(0),
):
# 如果传入了base64,则直接使用base64解码
if input_image_base64:
img = base64_2_numpy(input_image_base64)
# 否则使用上传的图片
else:
image_bytes = await input_image.read()
nparr = np.frombuffer(image_bytes, np.uint8)
img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
# ------------------- 选择抠图与人脸检测模型 -------------------
choose_handler(creator, human_matting_model, face_detect_model)
# 将字符串转为元组
size = (int(height), int(width))
try:
result = creator(
img,
size=size,
head_measure_ratio=head_measure_ratio,
head_height_ratio=head_height_ratio,
head_top_range=(top_distance_max, top_distance_min),
face_alignment=face_align,
brightness_strength=brightness_strength,
contrast_strength=contrast_strength,
sharpen_strength=sharpen_strength,
saturation_strength=saturation_strength,
)
except FaceError:
result_message = {"status": False}
# 如果检测到人脸数量等于1, 则返回标准证和高清照结果(png 4通道图像)
else:
result_image_standard_bytes = save_image_dpi_to_bytes(cv2.cvtColor(result.standard, cv2.COLOR_RGBA2BGRA), None, dpi)
result_message = {
"status": True,
"image_base64_standard": bytes_2_base64(result_image_standard_bytes),
}
# 如果hd为True, 则增加高清照结果(png 4通道图像)
if hd:
result_image_hd_bytes = save_image_dpi_to_bytes(cv2.cvtColor(result.hd, cv2.COLOR_RGBA2BGRA), None, dpi)
result_message["image_base64_hd"] = bytes_2_base64(result_image_hd_bytes)
return result_message
# 人像抠图接口
@app.post("/human_matting")
async def human_matting_inference(
input_image: UploadFile = File(None),
input_image_base64: str = Form(None),
human_matting_model: str = Form("hivision_modnet"),
dpi: int = Form(300),
):
if input_image_base64:
img = base64_2_numpy(input_image_base64)
else:
image_bytes = await input_image.read()
nparr = np.frombuffer(image_bytes, np.uint8)
img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
# ------------------- 选择抠图与人脸检测模型 -------------------
choose_handler(creator, human_matting_model, None)
try:
result = creator(
img,
change_bg_only=True,
)
except FaceError:
result_message = {"status": False}
else:
result_image_standard_bytes = save_image_dpi_to_bytes(cv2.cvtColor(result.standard, cv2.COLOR_RGBA2BGRA), None, dpi)
result_message = {
"status": True,
"image_base64": bytes_2_base64(result_image_standard_bytes),
}
return result_message
# 透明图像添加纯色背景接口
@app.post("/add_background")
async def photo_add_background(
input_image: UploadFile = File(None),
input_image_base64: str = Form(None),
color: str = Form("000000"),
kb: int = Form(None),
dpi: int = Form(300),
render: int = Form(0),
):
render_choice = ["pure_color", "updown_gradient", "center_gradient"]
if input_image_base64:
img = base64_2_numpy(input_image_base64)
else:
image_bytes = await input_image.read()
nparr = np.frombuffer(image_bytes, np.uint8)
img = cv2.imdecode(nparr, cv2.IMREAD_UNCHANGED)
color = hex_to_rgb(color)
color = (color[2], color[1], color[0])
result_image = add_background(
img,
bgr=color,
mode=render_choice[render],
).astype(np.uint8)
result_image = cv2.cvtColor(result_image, cv2.COLOR_RGB2BGR)
if kb:
result_image_bytes = resize_image_to_kb(result_image, None, int(kb), dpi=dpi)
else:
result_image_bytes = save_image_dpi_to_bytes(result_image, None, dpi=dpi)
result_messgae = {
"status": True,
"image_base64": bytes_2_base64(result_image_bytes),
}
return result_messgae
# 六寸排版照生成接口
@app.post("/generate_layout_photos")
async def generate_layout_photos(
input_image: UploadFile = File(None),
input_image_base64: str = Form(None),
height: int = Form(413),
width: int = Form(295),
kb: int = Form(None),
dpi: int = Form(300),
):
# try:
if input_image_base64:
img = base64_2_numpy(input_image_base64)
else:
image_bytes = await input_image.read()
nparr = np.frombuffer(image_bytes, np.uint8)
img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
size = (int(height), int(width))
typography_arr, typography_rotate = generate_layout_array(
input_height=size[0], input_width=size[1]
)
result_layout_image = generate_layout_image(
img, typography_arr, typography_rotate, height=size[0], width=size[1]
).astype(np.uint8)
result_layout_image = cv2.cvtColor(result_layout_image, cv2.COLOR_RGB2BGR)
if kb:
result_layout_image_bytes = resize_image_to_kb(
result_layout_image, None, int(kb), dpi=dpi
)
else:
result_layout_image_bytes = save_image_dpi_to_bytes(result_layout_image, None, dpi=dpi)
result_layout_image_base64 = bytes_2_base64(result_layout_image_bytes)
result_messgae = {
"status": True,
"image_base64": result_layout_image_base64,
}
return result_messgae
# 透明图像添加水印接口
@app.post("/watermark")
async def watermark(
input_image: UploadFile = File(None),
input_image_base64: str = Form(None),
text: str = Form("Hello"),
size: int = 20,
opacity: float = 0.5,
angle: int = 30,
color: str = "#000000",
space: int = 25,
kb: int = Form(None),
dpi: int = Form(300),
):
if input_image_base64:
img = base64_2_numpy(input_image_base64)
else:
image_bytes = await input_image.read()
nparr = np.frombuffer(image_bytes, np.uint8)
img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
try:
result_image = add_watermark(img, text, size, opacity, angle, color, space)
result_image = cv2.cvtColor(result_image, cv2.COLOR_RGB2BGR)
if kb:
result_image_bytes = resize_image_to_kb(result_image, None, int(kb), dpi=dpi)
else:
result_image_bytes = save_image_dpi_to_bytes(result_image, None, dpi=dpi)
result_image_base64 = bytes_2_base64(result_image_bytes)
result_messgae = {
"status": True,
"image_base64": result_image_base64,
}
except Exception as e:
result_messgae = {
"status": False,
"error": str(e),
}
return result_messgae
# 设置照片KB值接口(RGB图)
@app.post("/set_kb")
async def set_kb(
input_image: UploadFile = File(None),
input_image_base64: str = Form(None),
dpi: int = Form(300),
kb: int = Form(50),
):
if input_image_base64:
img = base64_2_numpy(input_image_base64)
else:
image_bytes = await input_image.read()
nparr = np.frombuffer(image_bytes, np.uint8)
img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
try:
result_image = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
result_image_bytes = resize_image_to_kb(result_image, None, int(kb), dpi=dpi)
result_image_base64 = bytes_2_base64(result_image_bytes)
result_messgae = {
"status": True,
"image_base64": result_image_base64,
}
except Exception as e:
result_messgae = {
"status": False,
"error": e,
}
return result_messgae
# 证件照智能裁剪接口
@app.post("/idphoto_crop")
async def idphoto_crop_inference(
input_image: UploadFile = File(None),
input_image_base64: str = Form(None),
height: int = Form(413),
width: int = Form(295),
face_detect_model: str = Form("mtcnn"),
hd: bool = Form(True),
dpi: int = Form(300),
head_measure_ratio: float = Form(0.2),
head_height_ratio: float = Form(0.45),
top_distance_max: float = Form(0.12),
top_distance_min: float = Form(0.10),
):
if input_image_base64:
img = base64_2_numpy(input_image_base64)
else:
image_bytes = await input_image.read()
nparr = np.frombuffer(image_bytes, np.uint8)
img = cv2.imdecode(nparr, cv2.IMREAD_UNCHANGED) # 读取图像(4通道)
# ------------------- 选择抠图与人脸检测模型 -------------------
choose_handler(creator, face_detect_option=face_detect_model)
# 将字符串转为元组
size = (int(height), int(width))
try:
result = creator(
img,
size=size,
head_measure_ratio=head_measure_ratio,
head_height_ratio=head_height_ratio,
head_top_range=(top_distance_max, top_distance_min),
crop_only=True,
)
except FaceError:
result_message = {"status": False}
# 如果检测到人脸数量等于1, 则返回标准证和高清照结果(png 4通道图像)
else:
result_image_standard_bytes = save_image_dpi_to_bytes(cv2.cvtColor(result.standard, cv2.COLOR_RGBA2BGRA), None, dpi)
result_message = {
"status": True,
"image_base64_standard": bytes_2_base64(result_image_standard_bytes),
}
# 如果hd为True, 则增加高清照结果(png 4通道图像)
if hd:
result_image_hd_bytes = save_image_dpi_to_bytes(cv2.cvtColor(result.hd, cv2.COLOR_RGBA2BGRA), None, dpi)
result_message["image_base64_hd"] = bytes_2_base64(result_image_hd_bytes)
return result_message
if __name__ == "__main__":
import uvicorn
# 在8080端口运行推理服务
uvicorn.run(app, host="0.0.0.0", port=8080)