-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathbench.py
300 lines (250 loc) · 12.6 KB
/
bench.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
# For comparing among different datasets. Mostly similar to core.py
# but make it print less info to make us see bigger picture better
import sys
import importlib.util
from typing import Type
import torch
from torch import Tensor
import ezkl
import os
import numpy as np
import json
import time
import math
# Export model
def export_onnx(model, data_tensor_array, model_loc):
circuit = model()
# Try running `prepare()` if it exists
try:
circuit.prepare(data_tensor_array)
except AttributeError:
pass
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# print(device)
circuit.to(device)
# Flips the neural net into inference mode
circuit.eval()
input_names = []
dynamic_axes = {}
data_tensor_tuple = ()
for i in range(len(data_tensor_array)):
data_tensor_tuple += (data_tensor_array[i],)
input_index = "input"+str(i+1)
input_names.append(input_index)
dynamic_axes[input_index] = {0 : 'batch_size'}
dynamic_axes["output"] = {0 : 'batch_size'}
# Export the model
torch.onnx.export(circuit, # model being run
data_tensor_tuple, # model input (or a tuple for multiple inputs)
model_loc, # where to save the model (can be a file or file-like object)
export_params=True, # store the trained parameter weights inside the model file
opset_version=11, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names = input_names, # the model's input names
output_names = ['output'], # the model's output names
dynamic_axes=dynamic_axes)
# ===================================================================================================
# ===================================================================================================
# mode is either "accuracy" or "resources"
# sel_data = selected column from data that will be used for computation
def gen_settings(sel_data_path, onnx_filename, scale, mode, settings_filename):
# print("==== Generate & Calibrate Setting ====")
# Set input to be Poseidon Hash, and param of computation graph to be public
# Poseidon is not homomorphic additive, maybe consider Pedersens or Dory commitment.
gip_run_args = ezkl.PyRunArgs()
gip_run_args.input_visibility = "hashed" # matrix and generalized inverse commitments
gip_run_args.output_visibility = "public" # no parameters used
gip_run_args.param_visibility = "private" # should be Tensor(True)--> to enforce arbitrary data in w
# generate settings
ezkl.gen_settings(onnx_filename, settings_filename, py_run_args=gip_run_args)
if scale =="default":
ezkl.calibrate_settings(
sel_data_path, onnx_filename, settings_filename, mode)
else:
ezkl.calibrate_settings(
sel_data_path, onnx_filename, settings_filename, mode, scales = scale)
assert os.path.exists(settings_filename)
assert os.path.exists(sel_data_path)
assert os.path.exists(onnx_filename)
f_setting = open(settings_filename, "r")
# print("scale: ", scale)
# print("setting: ", f_setting.read())
# ===================================================================================================
# ===================================================================================================
# Here dummy_sel_data_path is redundant, but here to use process_data
def verifier_define_calculation(dummy_data_path,col_array, dummy_sel_data_path, verifier_model, verifier_model_path):
dummy_data_tensor_array = process_data(dummy_data_path, col_array, dummy_sel_data_path)
# export onnx file
export_onnx(verifier_model, dummy_data_tensor_array, verifier_model_path)
# given data file (whole json table), create a dummy data file with randomized data
def create_dummy(data_path, dummy_data_path):
data = json.loads(open(data_path, "r").read())
# assume all columns have same number of rows
dummy_data ={}
for col in data:
# not use same value for every column to prevent something weird, like singular matrix
dummy_data[col] = np.round(np.random.uniform(1,30,len(data[col])),1).tolist()
json.dump(dummy_data, open(dummy_data_path, 'w'))
# ===================================================================================================
# ===================================================================================================
# New version
def process_data(data_path,col_array, sel_data_path) -> list[Tensor]:
data_tensor_array=[]
sel_data = []
data_onefile = json.loads(open(data_path, "r").read())
for col in col_array:
data = data_onefile[col]
data_tensor = torch.tensor(data, dtype = torch.float64)
data_tensor_array.append(torch.reshape(data_tensor, (1,-1,1)))
sel_data.append(data)
# Serialize data into file:
# sel_data comes from `data`
json.dump(dict(input_data = sel_data), open(sel_data_path, 'w' ))
return data_tensor_array
# we decide to not have sel_data_path as parameter since a bit redundant parameter.
def prover_gen_settings(data_path, col_array, sel_data_path, prover_model,prover_model_path, scale, mode, settings_path):
data_tensor_array = process_data(data_path,col_array, sel_data_path)
# export onnx file
export_onnx(prover_model, data_tensor_array, prover_model_path)
# gen + calibrate setting
gen_settings(sel_data_path, prover_model_path, scale, mode, settings_path)
# ===================================================================================================
# ===================================================================================================
# Here prover can concurrently call this since all params are public to get pk.
# Here write as verifier function to emphasize that verifier must calculate its own vk to be sure
def setup(verifier_model_path, verifier_compiled_model_path, settings_path,vk_path, pk_path ):
# compile circuit
res = ezkl.compile_circuit(verifier_model_path, verifier_compiled_model_path, settings_path)
assert res == True
# srs path
res = ezkl.get_srs(settings_path)
# setup vk, pk param for use..... prover can use same pk or can init their own!
# print("==== setting up ezkl ====")
start_time = time.time()
res = ezkl.setup(
verifier_compiled_model_path,
vk_path,
pk_path)
end_time = time.time()
time_setup = end_time -start_time
# print(f"Time setup: {time_setup} seconds")
assert res == True
assert os.path.isfile(vk_path)
assert os.path.isfile(pk_path)
assert os.path.isfile(settings_path)
# ===================================================================================================
# ===================================================================================================
def prover_gen_proof(
prover_model_path,
sel_data_path,
witness_path,
prover_compiled_model_path,
settings_path,
proof_path,
pk_path
):
# print("!@# compiled_model exists?", os.path.isfile(prover_compiled_model_path))
res = ezkl.compile_circuit(prover_model_path, prover_compiled_model_path, settings_path)
# print("!@# compiled_model exists?", os.path.isfile(prover_compiled_model_path))
assert res == True
# now generate the witness file
# print('==== Generating Witness ====')
witness = ezkl.gen_witness(sel_data_path, prover_compiled_model_path, witness_path)
assert os.path.isfile(witness_path)
# print(witness["outputs"])
settings = json.load(open(settings_path))
output_scale = settings['model_output_scales']
# print("witness boolean: ", ezkl.vecu64_to_float(witness['outputs'][0][0], output_scale[0]))
# for i in range(len(witness['outputs'][1])):
# print("witness result", i+1,":", ezkl.vecu64_to_float(witness['outputs'][1][i], output_scale[1]))
# GENERATE A PROOF
# print("==== Generating Proof ====")
start_time = time.time()
res = ezkl.prove(
witness_path,
prover_compiled_model_path,
pk_path,
proof_path,
"single",
)
# print("proof: " ,res)
end_time = time.time()
time_gen_prf = end_time -start_time
# print(f"Time gen prf: {time_gen_prf} seconds")
assert os.path.isfile(proof_path)
return time_gen_prf
# ===================================================================================================
# ===================================================================================================
# return result array
def verifier_verify(proof_path, settings_path, vk_path):
# enforce boolean statement to be true
settings = json.load(open(settings_path))
output_scale = settings['model_output_scales']
proof = json.load(open(proof_path))
num_inputs = len(settings['model_input_scales'])
# print("num_inputs: ", num_inputs)
proof["instances"][0][num_inputs] = ezkl.float_to_vecu64(1.0, output_scale[0])
json.dump(proof, open(proof_path, 'w'))
# print("prf instances: ", proof['instances'])
# print("proof boolean: ", ezkl.vecu64_to_float(proof['instances'][0][num_inputs], output_scale[0]))
assert ezkl.vecu64_to_float(proof['instances'][0][num_inputs], output_scale[0]) == 1, "Prf not set to 1"
result = []
for i in range(num_inputs+1, len(proof['instances'][0])):
# print("proof result",i-num_inputs,":", ezkl.vecu64_to_float(proof['instances'][0][i], output_scale[1]))
result.append(ezkl.vecu64_to_float(proof['instances'][0][i], output_scale[1]))
res = ezkl.verify(
proof_path,
settings_path,
vk_path
)
assert res == True
# print("verified")
return result
# ===================================================================================================
# ===================================================================================================
# just one dataset at a time.
def bench_one(data_path, col_array, model_func, gen_param_func, data_name, scale,logrow, mode):
os.makedirs(os.path.dirname('shared/'), exist_ok=True)
os.makedirs(os.path.dirname('prover/'), exist_ok=True)
verifier_model_path = os.path.join('shared/verifier.onnx')
prover_model_path = os.path.join('prover/prover.onnx')
verifier_compiled_model_path = os.path.join('shared/verifier.compiled')
prover_compiled_model_path = os.path.join('prover/prover.compiled')
pk_path = os.path.join('shared/test.pk')
vk_path = os.path.join('shared/test.vk')
proof_path = os.path.join('shared/test.pf')
settings_path = os.path.join('shared/settings.json')
srs_path = os.path.join('shared/kzg.srs')
witness_path = os.path.join('prover/witness.json')
# this is private to prover since it contains actual data
sel_data_path = os.path.join('prover/sel_data.json')
# this is just dummy random value
sel_dummy_data_path = os.path.join('shared/sel_dummy_data.json')
dummy_data_path = os.path.join('shared/dummy_data.json')
print("===================================== ", data_name," =====================================")
# go through each dataset (we have 9 data sets)
create_dummy(data_path, dummy_data_path)
dummy_data_tensor_array = process_data(dummy_data_path, col_array, sel_dummy_data_path)
# verifier_define_calculation
export_onnx(model_func(gen_param_func(dummy_data_tensor_array)),dummy_data_tensor_array, verifier_model_path)
# prover_gen_settings
data_tensor_array = process_data(data_path,col_array, sel_data_path)
# export onnx file
export_onnx(model_func(gen_param_func(data_tensor_array)), data_tensor_array, prover_model_path)
# gen + calibrate setting
gen_settings(sel_data_path, prover_model_path, scale, mode, settings_path)
f_setting = json.loads(open(settings_path, "r").read())
print("og setting: ", f_setting)
# f_setting['run_args']['logrows']=math.ceil(math.log(f_setting['num_rows'],2))
f_setting['run_args']['logrows']=logrow
json.dump(f_setting, open(settings_path, "w"), indent=2) # You can adjust the 'indent' parameter for formatting
print("logrow cal settings: ",json.loads(open(settings_path, "r").read()) )
setup(verifier_model_path, verifier_compiled_model_path, settings_path,vk_path, pk_path)
gen_prf_time = prover_gen_proof(prover_model_path, sel_data_path, witness_path, prover_compiled_model_path, settings_path, proof_path, pk_path)
result= verifier_verify(proof_path, settings_path, vk_path)
# f_setting = open(settings_path, "r")
# print("setting: ", f_setting.read())
print("gen prf time: ", gen_prf_time)
print("Theory result: ", gen_param_func(data_tensor_array)[0])
print("Our result: ", result)
return gen_prf_time