- New features
- Bug fixes
- perf(torchvision): update load_state_dict_from_url usage
- Breaking changes.
- New features
- Bug fixes
- fix(optim): filter all layers which require_grad=False
- fix(dataloader): when using cpu, set pin_memory=False. Default: True
- Breaking changes.
- New features
- perf(model): add load_pretrained_weights func
- perf(base_recognizer.py): update _init_weights
- feat(tools): add_md5_for_pths
- perf(config): add cfg.DATASET.KEEP_RGB to keep RGB data format or not…
- Default is False
- Bug fixes
- perf(checkpoint): adapt to the latest torchvision version
- prevent error: "from torch.utils.model_zoo import load_url as load_state_dict_from_url"
- fix(heads): use cfg.MODEL.HEAD.NUM_CLASSES in head definition
- fix(trainer.py): fix max_iter calculate
- perf(checkpoint): adapt to the latest torchvision version
- Breaking changes.
- New features
- perf(transforms): update Resize/AutoAugment/SquarePad
- add largest edge mode for Resize;
- optimize realization for Resize/AutoAugment/SquarePad.
- perf(transforms): update Resize/AutoAugment/SquarePad
- Bug fixes
- fix(transforms): support Resize and Resize2 together
- Breaking changes.
- New features
- perf(color_jitter.py): add hue use
- perf(resize.py): update Resize realization and usage
- Supports scaling based on a single dimension;
- Added a new zoom option Resize2, for secondary scaling
- Bug fixes
- Breaking changes.
- New features
- perf(base_evaluator.py): update result_str format
- perf(color_jitter.py): add hue config
- Bug fixes
- fix(mpdataset): fix data read index order
- fix(configs): fix TRANSFORMS order: ('ToTensor', 'Normalize') to ('Normalize', 'ToTensor')
- Breaking changes.
- New features
- perf(evaluator): update topk output format
- Bug fixes
- fix(dataset): fix default_converter usage
- Breaking changes.
- New features
- perf(mp_dataset.py): change file format and enhance the loading way
- Bug fixes
- Breaking changes.
- New features
- Bug fixes
- fix(cv2.cvtColor): Argument 'code' is required to be an integer
- fix(datasets): when convert PIL.Image to np.ndarray, synchronization settings RGB2BGR
- Breaking changes.
- New features
- Bug fixes
- fix(datasets): use np.ndarray instead of PIL.Image to preprocess image
- Breaking changes.
- New features
- feat(transforms): use albumentation replace torchvision as backbend
- Bug fixes
- Breaking changes.
- use albumentation replace torchvision as backbend
- New features
- feat(dataset): add GeneralDatasetV2
- feat(dataset): add MPDataset for large-scale data loading
- perf(dataloader): in train phase, keep drop_last=True
- feat(sampler): custom DistributedSampler used for IterableDataset
- Update issue templates
- Bug fixes
- fix(inference.py): add KEY_OUTPUT import
- Breaking changes.
- New features
- Bug fixes
- fix(inference): only use output_dict[KEY_OUTPUT] when infering
- fix(transform): use cfg.TRANSFORM.KEEP_BITS instead of cfg.TRANSFORM.BITS
- Breaking changes.
- New features
- feat(transform): custom resize using opencv replacing pil
- Bug fixes
- fix(checkpoint): when resume, make cur_epoch + 1
- Breaking changes.
- New features
- new image processing strategy: RandomAutocontrast/RandomAdjustSharpness/RandomPosterize/ToPILImage
- Bug fixes
- Breaking changes.
- New features
- add gradient_clip feature
- add init weights for DDB
- Bug fixes
- input model.parameters() to clip_grad_norm_ rather than model
- Breaking changes.
- New features
- add new module: DiverseBranchBlock
- add tool: fuse block for ACBlock/RepVGGBLock/DBBlock
- Bug fixes
- Breaking changes.
- New features
- add RandomRotation/RandomErasing support
- add mixup/cutmix support
- add ghostnet attention module' sigmoid type setting
- Bug fixes
- Breaking changes.
- New features
- Bug fixes
- moduleNotFoundError: No module named 'resnest.torch.resnest'
- Breaking changes.
- New features
- add custom transform: SquarePad
- use torchvision.autoaugment replace ztransforms
- Bug fixes
- When some category data of the test set is empty, RuntimeError: stack expects a non-empty TensorList
- Breaking changes.
- New features
- update the accuracy calculation and calculate the TOPK accuracy of each category
- when compute dataset's accuracy, make assert for security
- Bug fixes
- Breaking changes.
- New features
- Bug fixes
- fix Dropout inplace operation make gradient computation failed
- Breaking changes.
- New features
- update hybrid_precision/distributed_data_parallel/gradient_acculmulate usage
- remove cfg.DATALOADER.SHUFFLE; use cfg.DATALOADER.RANDOM_SAMPLE
- Bug fixes
- add torch.cuda.empty_cache() to fix momory leak
- use cfg.MODEL.RECOGNIZER.PRETRAINED_NUM_CLASSES in head definition
- Breaking changes.
- New features
- add torchvision mobilenet_v3
- update parser.py usage
- update label_smoothing_loss usage
- Bug fixes
- Breaking changes.
- New features
- create EmptyLogger, used in subprocess
- refer torchvision to realize shufflenet_v2
- use nn.Hardswish replace custom HardswishWrapper
- add dropout config in mobilenet_v3 head
- add bias config in general_head_2d
- realize ghostnet
- upgrade development environment from torch 1.7.1 to 1.8.1
- Bug fixes
- fix the install requires bug
- fix resnet_d_backbone's fast_avg usage
- Breaking changes.
- New features
- transform repvgg/sknet pretrained model to zcls format
- update repvgg backbone and add attention module
- add bias config item for se-block
- open nn.Linear bias config for sk-block
- cancel bn2 for sknet_block
- Bug fixes
- Breaking changes.
- New features
- transform torchvision mobilenet/shufflenet pretrained model to zcls format
- Bug fixes
- use multiple mnanet/shufflenet model, deepcopy every stage_setting
- Breaking changes.
- New features
- transform torchvision resnet pretrained model to zcls format
- update pretrained model usage
- Bug fixes
- Breaking changes.
- New features
- Add docs for trick-data/trick-train
- Add public function get_classes for dataset
- Bug fixes
- Breaking changes.
- New features
- add DATALOADER SHUFFLE/RANDOM_SAMPLE config
- update lmdbdataset get image way
- update tools/zoom.py process way
- Bug fixes
- LMDBDataset: valueError: Decompressed Data Too Large
- Breaking changes.
- New features
- Add mkdocs project
- Update README
- add tool/zoom.py
- add Grayscale transform
- Bug fixes
- Breaking changes.
- New features
- add GeneralDataset class
- add LMDBDataset class
- add LMDBImageNet class
- add README usage
- Bug fixes
- when use prefetcher in inference, release it after one epoch
- split train/test data path in config_file
- Breaking changes.
- New features
- Bug fixes
- update python requires in requirements.txt and setup.py
- Breaking changes.
- New features
- Add LMDB ImageNet
- Bug fixes
- one epoch end, use release() to del prefetcher
- Breaking changes.
- New features
- Bug fixes
- create prefetcher in every epoch
- Breaking changes.
- New features
- Add PREFETCHER
- Bug fixes
- Distinguish local or remote pretrained links
- Breaking changes.
- New features
- Add CIFAR10 dataset
- Bug fixes
- Fix label_smoothing_loss usage
- Breaking changes.
- New features
- Bug fixes
- When do_evaluation, need add test_data_loader
- Breaking changes.
- New features
- Change the loading method of test data set
- Bug fixes
- Breaking changes.
- New features
- Extract evaluator implementation, abstract out the general evaluator
- Command line parameter parse of merge training phase / test phase
- Refactoring the implementation of transforms module
- Bug fixes
- The Imagenet category entry is a tuple, not a string
- Breaking changes.
- New features
- Add FashionMNIST/ImageNet dataset
- Bug fixes
- Breaking changes.
- New features
- Add python package
- Bug fixes
- Breaking changes.
- New features
- Add CIFAR100 dataset
- Add Torchvision Transforms and AutoAugment
- Add batch dataloader
- Add multi-gpu training/testing
- Add hybrid precision training
- Add gradient accumulate training
- Add ResNet/ResNeXt/SKNet/ResNeSt/SENet/GCNet/Non-local/MobileNetV1-V2-V3/ShuffleNetV1-V2/MNASNet
- Add CrossEntropyLoss/LabelSmoothingLoss
- Add Adam/SGD/RMSProp
- Add GradualWarmup/CosineAnnealingLR/MultiStepLR
- Bug fixes
- Breaking changes.