forked from dleemiller/WordLlama
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_mteb.py
181 lines (158 loc) · 4.49 KB
/
eval_mteb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# ruff: noqa: E402
from __future__ import annotations
import os
# Set environment variables
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
os.environ["TORCH_USE_CUDA_DSA"] = "1"
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["HF_DATASETS_TRUST_REMOTE_CODE"] = "1"
import mteb
import logging
from functools import partial
from typing import Any, List
from wordllama import load_training, Config
import numpy as np
from more_itertools import chunked
from mteb.model_meta import ModelMeta
logger = logging.getLogger(__name__)
TASK_LIST_CLASSIFICATION = [
"AmazonCounterfactualClassification",
"AmazonPolarityClassification",
"AmazonReviewsClassification",
"Banking77Classification",
"EmotionClassification",
"ImdbClassification",
"MassiveIntentClassification",
"MassiveScenarioClassification",
"MTOPDomainClassification",
"MTOPIntentClassification",
"ToxicConversationsClassification",
"TweetSentimentExtractionClassification",
]
TASK_LIST_CLUSTERING = [
"ArxivClusteringP2P",
"ArxivClusteringS2S",
"BiorxivClusteringP2P",
"BiorxivClusteringS2S",
"MedrxivClusteringP2P",
"MedrxivClusteringS2S",
"RedditClustering",
"RedditClusteringP2P",
"StackExchangeClustering",
"StackExchangeClusteringP2P",
"TwentyNewsgroupsClustering",
]
TASK_LIST_PAIR_CLASSIFICATION = [
"SprintDuplicateQuestions",
"TwitterSemEval2015",
"TwitterURLCorpus",
]
TASK_LIST_RERANKING = [
"AskUbuntuDupQuestions",
"MindSmallReranking",
"SciDocsRR",
"StackOverflowDupQuestions",
]
TASK_LIST_RETRIEVAL = [
"ArguAna",
## "ClimateFEVER",
"CQADupstackAndroidRetrieval",
"CQADupstackEnglishRetrieval",
"CQADupstackGamingRetrieval",
"CQADupstackGisRetrieval",
"CQADupstackMathematicaRetrieval",
"CQADupstackPhysicsRetrieval",
"CQADupstackProgrammersRetrieval",
"CQADupstackStatsRetrieval",
"CQADupstackTexRetrieval",
"CQADupstackUnixRetrieval",
"CQADupstackWebmastersRetrieval",
"CQADupstackWordpressRetrieval",
## "DBPedia",
## "FEVER",
"FiQA2018",
## "HotpotQA",
## "MSMARCO",
"NFCorpus",
## "NQ",
## "QuoraRetrieval",
"SCIDOCS",
"SciFact",
"Touche2020",
"TRECCOVID",
]
TASK_LIST_STS = [
"BIOSSES",
"SICK-R",
"STS12",
"STS13",
"STS14",
"STS15",
"STS16",
"STS17",
"STS22",
"STSBenchmark",
"SummEval",
]
class WordLlamaWrapper:
def __init__(
self, model_name: str, config, embed_dim: int | None = None, **kwargs
) -> None:
self._model_name = model_name
self._embed_dim = embed_dim
print(model_name)
self.model = load_training(model_name, config, dims=embed_dim).to("cuda")
def encode(self, sentences: List[str], batch_size=512, **kwargs: Any) -> np.ndarray:
all_embeddings = []
for chunk in chunked(sentences, batch_size):
embed_chunk = (
self.model.embed(chunk, return_pt=True, norm=True)
.to("cpu")
.detach()
.numpy()
)
all_embeddings.append(embed_chunk)
# Concatenate all chunks into a single numpy array
concatenated_embeddings = np.concatenate(all_embeddings, axis=0)
return concatenated_embeddings
if __name__ == "__main__":
TASK_LIST = (
TASK_LIST_CLASSIFICATION
+ TASK_LIST_CLUSTERING
+ TASK_LIST_PAIR_CLASSIFICATION
+ TASK_LIST_RERANKING
+ TASK_LIST_RETRIEVAL
+ TASK_LIST_STS
)
# all tasks
from datetime import datetime
CONFIG_NAME = "l2_supercat"
DIMS = 512
BINARY = ""
wordllama = ModelMeta(
name=f"wordllama_{CONFIG_NAME}",
revision="1",
release_date="2024-07-09",
languages=["eng-Latn"],
loader=partial(
WordLlamaWrapper,
f"wordllama/weights/{CONFIG_NAME}_{DIMS}{BINARY}.safetensors",
config=getattr(Config, CONFIG_NAME),
embed_dim=DIMS,
),
max_tokens=512,
embed_dim=DIMS,
open_source=True,
distance_metric="cosine",
)
# tasks = MTEB_MAIN_EN # or use a specific benchmark
model = wordllama.load_model()
evaluation = mteb.MTEB(tasks=TASK_LIST)
results = evaluation.run(
model,
output_folder=f"wordllama_{CONFIG_NAME}_{DIMS}_{datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}",
overwrite_results=True,
verbosity=3,
raise_error=False,
trust_remote_code=True,
)