-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtemplate_wrapper.py
274 lines (241 loc) · 6.86 KB
/
template_wrapper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
from __future__ import annotations
from enum import Enum
from typing import (
Any,
Literal,
Sequence,
SupportsFloat,
SupportsInt,
Union,
overload
)
from typing_extensions import (
Buffer,
Self
)
import numpy as np
import template
class _PyvkObject:
__slots__ = ("_pyvko",)
def __init__(
self: Self,
_pyvko: Any
) -> None:
super().__init__()
self._pyvko: Any = _pyvko
@property
def _address(
self: Self
) -> bytes:
return self._pyvko._address
class _PyvkTypes:
__slots__ = ()
#Int = SupportsInt
#Float = SupportsFloat
#Number = Union[
# int,
# float,
# bool,
# np.number[Any],
# np.ndarray[tuple[()], np.dtype[Any]]
#]
#Array1d = Union[
# Sequence[Number],
# np.ndarray[tuple[int], np.dtype[Any]],
# bytes
#]
#OptionalArray1d = Array1d | None
#Array2d = Union[
# Sequence[Sequence[Number]],
# Sequence[np.ndarray[tuple[int], np.dtype[Any]]],
# np.ndarray[tuple[int, int], np.dtype[Any]],
# bytes
#]
#OptionalArray2d = Array2d | None
#Array3d = Union[
# Sequence[Sequence[Sequence[Number]]],
# Sequence[Sequence[np.ndarray[tuple[int], np.dtype[Any]]]],
# Sequence[np.ndarray[tuple[int, int], np.dtype[Any]]],
# np.ndarray[tuple[int, int, int], np.dtype[Any]],
# bytes
#]
#OptionalArray3d = Array3d | None
#Address = Union[
# _PyvkObject,
# int
#]
#OptionalAddress = Address | None
#AddressArray1d = Sequence[Address]
#OptionalAddressArray1d = Sequence[OptionalAddress]
#AddressOptionalArray1d = AddressArray1d | None
#OptionalAddressOptionalArray1d = OptionalAddressArray1d | None
#String = Union[
# str,
# bytes
#]
#OptionalString = String | None
# array: Sequence[SupportsInt] | Buffer
@staticmethod
def as_number(
obj: Any,
dtype: type[np.number]
) -> bytes:
match obj:
case int() | float() | bool():
return dtype(obj).tobytes()
case np.number():
return obj.astype(dtype).tobytes()
case np.ndarray():
assert obj.size == 1
return obj.astype(dtype).tobytes()
#case bytes():
# assert len(obj) == np.dtype(dtype).itemsize
# return obj
raise TypeError(f"Type incompatible with number: {type(obj)}")
@staticmethod
def as_address(
obj: Any
) -> bytes:
match obj:
case int():
return np.uint64(obj).tobytes()
case _PyvkObject():
return obj._address
raise TypeError(f"Type incompatible with address: {type(obj)}")
@staticmethod
def as_str(
obj: Any
) -> bytes:
match obj:
case str():
return obj.encode()
case bytes():
return obj
raise TypeError(f"Type incompatible with str: {type(obj)}")
@staticmethod
def as_array(
obj: Any,
dtype: type[np.number[Any]],
shape: tuple[int, ...]
) -> bytes:
match obj:
case Sequence():
array = np.array(obj, dtype)
assert array.shape == shape
return array.tobytes()
case np.ndarray():
array = obj.astype(dtype)
assert array.shape == shape
return array.tobytes()
case bytes():
return obj
raise TypeError(f"Type incompatible with array: {type(obj)}")
@staticmethod
def as_arrays(
obj: Any,
dtype: type[np.number[Any]],
shape: tuple[int, ...]
) -> bytes:
match obj:
case Sequence():
array = np.array(obj, dtype)
assert array.shape[1:] == shape
return array.tobytes()
case np.ndarray():
array = obj.astype(dtype)
assert array.shape[1:] == shape
return array.tobytes()
case bytes():
return obj
raise TypeError(f"Type incompatible with arrays: {type(obj)}")
class EnumDemo(Enum):
A = template.EnumDemo_A
B = template.EnumDemo_B
C = template.EnumDemo_C
D = template.EnumDemo_D
class PerformanceValueDataINTEL(_PyvkObject):
__slots__ = ("_key",)
@overload
def __init__(
self,
*,
value_32: _PyvkTypes.Number
) -> None: ...
@overload
def __init__(
self,
*,
value_64: _PyvkTypes.Number
) -> None: ...
@overload
def __init__(
self,
*,
value_float: _PyvkTypes.Number
) -> None: ...
@overload
def __init__(
self,
*,
value_bool: _PyvkTypes.Number
) -> None: ...
@overload
def __init__(
self,
*,
value_string: _PyvkTypes.String
) -> None: ...
def __init__(
self,
**kwargs: Any
) -> None:
try:
assert kwargs
key, arg = kwargs.popitem()
assert not kwargs
except AssertionError:
raise TypeError(f"Must specify exactly 1 field for union {type(self).__name__}() (got {len(kwargs)})") from None
match key:
case "value_32":
cdata = template.PerformanceValueDataINTEL_value32(_PyvkTypes.as_number(arg, np.uint32))
case "value_64":
cdata = template.PerformanceValueDataINTEL_value64(_PyvkTypes.as_number(arg, np.uint64))
case "value_float":
cdata = template.PerformanceValueDataINTEL_valueFloat(_PyvkTypes.as_number(arg, np.float32))
case "value_bool":
cdata = template.PerformanceValueDataINTEL_valueBool(_PyvkTypes.as_number(arg, np.uint32))
case "value_string":
cdata = template.PerformanceValueDataINTEL_valueString(_PyvkTypes.as_string(arg))
case _:
raise TypeError(f"{key} is an invalid keyword argument for {type(self).__name__}()")
super().__init__(cdata)
self._key: Literal["value_32", "value_64", "value_float", "value_bool", "value_string"] = key
def __repr__(
self
) -> str:
return f"PerformanceValueDataINTEL({self._key}={self.__getattribute__(self._key)!r})"
@property
def value_32(
self
) -> int:
return self._pyvko.value32
@property
def value_64(
self
) -> int:
return self._pyvko.value64
@property
def value_float(
self
) -> float:
return self._pyvko.valueFloat
@property
def value_bool(
self
) -> bool:
return self._pyvko.valueBool
@property
def value_string(
self
) -> str:
return self._pyvko.valueString