forked from PeterL1n/BackgroundMattingV2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_refine_moe_kmeans.py
291 lines (250 loc) · 13.5 KB
/
train_refine_moe_kmeans.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
"""
Train MattingRefine
Supports multi-GPU training with DistributedDataParallel() and SyncBatchNorm.
Select GPUs through CUDA_VISIBLE_DEVICES environment variable.
Example:
CUDA_VISIBLE_DEVICES=0,1 python train_refine_multi.py \
--dataset-name videomatte240k \
--model-backbone resnet50 \
--model-name mattingrefine-resnet50-videomatte240k \
--model-last-checkpoint "mattingbase-resnet50-videomatte240k/epoch-7.pth" \
--epoch-end 1 \
--num-experts 4
"""
import numpy as np
import argparse
import kornia
import torch
import os
import random
from sklearn.decomposition import KernelPCA
from sklearn.manifold import TSNE
from sklearn.cluster import MiniBatchKMeans
from torch import nn
from torch import distributed as dist
from torch import multiprocessing as mp
from torch.nn import functional as F
from torch.cuda.amp import autocast, GradScaler
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DataLoader, Subset
from torch.optim import Adam
from torchvision.utils import make_grid
from tqdm import tqdm
from torchvision import transforms as T
from PIL import Image
from model.autoencoder import Autoencoder
from data_path import DATA_PATH
from dataset import ImagesDataset, ZipDataset, VideoDataset, SampleDataset
from dataset import augmentation as A
from model import MattingRefine
from model.utils import load_matched_state_dict
from model import MoE_kmeans
import warnings
from dataset import ImagesDataset, ZipDataset, VideoDataset, SampleDataset, ImagesDataset_addname
import pandas as pd
warnings.filterwarnings("ignore")
# --------------- Arguments ---------------
parser = argparse.ArgumentParser()
parser.add_argument('--dataset-name', type=str, required=True, choices=DATA_PATH.keys())
parser.add_argument('--model-backbone', type=str, required=True, choices=['resnet101', 'resnet50', 'mobilenetv2'])
parser.add_argument('--model-backbone-scale', type=float, default=0.25)
parser.add_argument('--model-refine-mode', type=str, default='sampling', choices=['full', 'sampling', 'thresholding'])
parser.add_argument('--model-refine-sample-pixels', type=int, default=80_000)
parser.add_argument('--model-refine-thresholding', type=float, default=0.7)
parser.add_argument('--model-refine-kernel-size', type=int, default=3, choices=[1, 3])
parser.add_argument('--model-name', type=str, required=True)
parser.add_argument('--model-last-checkpoint', type=str, default=None)
parser.add_argument('--batch-size', type=int, default=4)
parser.add_argument('--num-workers', type=int, default=2)
parser.add_argument('--epoch-start', type=int, default=0)
parser.add_argument('--epoch-end', type=int, required=True)
parser.add_argument('--log-train-loss-interval', type=int, default=10)
parser.add_argument('--log-train-images-interval', type=int, default=1000)
parser.add_argument('--log-valid-interval', type=int, default=2000)
parser.add_argument('--checkpoint-interval', type=int, default=2000)
parser.add_argument('--num-experts', type=int, required=True, default=4)
args = parser.parse_args()
distributed_num_gpus = torch.cuda.device_count()
assert args.batch_size % distributed_num_gpus == 0
# --------------- Main ---------------
def train_worker(rank, addr, port):
# Distributed Setup
os.environ['MASTER_ADDR'] = addr
os.environ['MASTER_PORT'] = port
dist.init_process_group("nccl", rank=rank, world_size=distributed_num_gpus)
# Training DataLoader
dataset_train = ZipDataset([
ImagesDataset(DATA_PATH[args.dataset_name]['train']['pha'], mode='L'),
ImagesDataset(DATA_PATH[args.dataset_name]['train']['fgr'], mode='RGB'),
], transforms=A.PairCompose([
A.PairRandomAffineAndResize((512, 512), degrees=(-5, 5), translate=(0.1, 0.1), scale=(0.3, 1), shear=(-5, 5)),
A.PairRandomHorizontalFlip(),
A.PairRandomBoxBlur(0.1, 5),
A.PairRandomSharpen(0.1),
A.PairApplyOnlyAtIndices([1], T.ColorJitter(0.15, 0.15, 0.15, 0.05)),
A.PairApply(T.ToTensor())
]), assert_equal_length=True)
dataset_train_len_per_gpu_worker = int(len(dataset_train) / distributed_num_gpus)
dataset_train = Subset(dataset_train, range(rank * dataset_train_len_per_gpu_worker,
(rank + 1) * dataset_train_len_per_gpu_worker))
dataloader_train = DataLoader(dataset_train,
shuffle=False,
pin_memory=True,
drop_last=True,
batch_size=args.batch_size // distributed_num_gpus,
num_workers=args.num_workers // distributed_num_gpus)
dataset_train_bg = ImagesDataset_addname(DATA_PATH['backgrounds']['train'], mode='RGB', transforms=T.Compose([
A.RandomAffineAndResize((512, 512), degrees=(-5, 5), translate=(0.1, 0.1), scale=(1, 2), shear=(-5, 5)),
T.RandomHorizontalFlip(),
A.RandomBoxBlur(0.1, 5),
A.RandomSharpen(0.1),
T.ColorJitter(0.15, 0.15, 0.15, 0.05),
T.ToTensor()
]))
dataset_train_len_per_gpu_worker_bg = int(len(dataset_train_bg) / distributed_num_gpus)
dataset_train_bg = Subset(dataset_train_bg, range(rank * dataset_train_len_per_gpu_worker_bg,
(rank + 1) * dataset_train_len_per_gpu_worker_bg))
dataloader_train_bg = DataLoader(dataset_train_bg,
shuffle=False,
pin_memory=True,
drop_last=True,
batch_size=1,
num_workers=args.num_workers // distributed_num_gpus)
# Model
model = MoE_kmeans(args.num_experts,
args.model_backbone,
args.model_backbone_scale,
args.model_refine_mode,
args.model_refine_sample_pixels,
args.model_refine_thresholding,
args.model_refine_kernel_size)
model = nn.SyncBatchNorm.convert_sync_batchnorm(model)
model_distributed = nn.parallel.DistributedDataParallel(model.cuda(), device_ids=[rank],
find_unused_parameters=True)
if args.model_last_checkpoint is not None:
load_matched_state_dict(model.experts[0], torch.load(args.model_last_checkpoint))
load_matched_state_dict(model.experts[1], torch.load(args.model_last_checkpoint))
load_matched_state_dict(model.experts[2], torch.load(args.model_last_checkpoint))
optimizer = Adam([
{'params': model.experts[0].backbone.parameters(), 'lr': 5e-5},
{'params': model.experts[0].aspp.parameters(), 'lr': 5e-5},
{'params': model.experts[0].decoder.parameters(), 'lr': 1e-4},
{'params': model.experts[0].refiner.parameters(), 'lr': 3e-4},
{'params': model.experts[1].backbone.parameters(), 'lr': 5e-5},
{'params': model.experts[1].aspp.parameters(), 'lr': 5e-5},
{'params': model.experts[1].decoder.parameters(), 'lr': 1e-4},
{'params': model.experts[1].refiner.parameters(), 'lr': 3e-4},
{'params': model.experts[2].backbone.parameters(), 'lr': 5e-5},
{'params': model.experts[2].aspp.parameters(), 'lr': 5e-5},
{'params': model.experts[2].decoder.parameters(), 'lr': 1e-4},
{'params': model.experts[2].refiner.parameters(), 'lr': 3e-4},
])
scaler = GradScaler()
# Logging and checkpoints
if rank == 0:
if not os.path.exists(f'checkpoint/{args.model_name}'):
os.makedirs(f'checkpoint/{args.model_name}')
writer = SummaryWriter(f'log/{args.model_name}')
# Run loop
for epoch in range(args.epoch_start, args.epoch_end):
for i, (true_pha, true_fgr) in enumerate(tqdm(dataloader_train)):
step = epoch * len(dataloader_train) + i
true_pha = true_pha.to(rank, non_blocking=True)
true_fgr = true_fgr.to(rank, non_blocking=True)
true_bgr, names = next(iter(dataloader_train_bg))
true_bgr = torch.cat([true_bgr, true_bgr, true_bgr, true_bgr], dim=0)
true_bgr = true_bgr.to(rank, non_blocking=True)
true_pha, true_fgr, true_bgr = random_crop(true_pha, true_fgr, true_bgr)
true_src = true_bgr.clone()
# Augment with shadow
aug_shadow_idx = torch.rand(len(true_src)) < 0.3
if aug_shadow_idx.any():
aug_shadow = true_pha[aug_shadow_idx].mul(0.3 * random.random())
aug_shadow = T.RandomAffine(degrees=(-5, 5), translate=(0.2, 0.2), scale=(0.5, 1.5), shear=(-5, 5))(
aug_shadow)
aug_shadow = kornia.filters.box_blur(aug_shadow, (random.choice(range(20, 40)),) * 2)
true_src[aug_shadow_idx] = true_src[aug_shadow_idx].sub_(aug_shadow).clamp_(0, 1)
del aug_shadow
del aug_shadow_idx
# # Composite foreground onto source
true_src = true_fgr * true_pha + true_src * (1 - true_pha)
# Augment with noise
aug_noise_idx = torch.rand(len(true_src)) < 0.4
if aug_noise_idx.any():
true_src[aug_noise_idx] = true_src[aug_noise_idx].add_(
torch.randn_like(true_src[aug_noise_idx]).mul_(0.03 * random.random())).clamp_(0, 1)
true_bgr[aug_noise_idx] = true_bgr[aug_noise_idx].add_(
torch.randn_like(true_bgr[aug_noise_idx]).mul_(0.03 * random.random())).clamp_(0, 1)
del aug_noise_idx
# Augment background with jitter
aug_jitter_idx = torch.rand(len(true_src)) < 0.8
if aug_jitter_idx.any():
true_bgr[aug_jitter_idx] = kornia.augmentation.ColorJitter(0.18, 0.18, 0.18, 0.1)(
true_bgr[aug_jitter_idx])
del aug_jitter_idx
# Augment background with affine
aug_affine_idx = torch.rand(len(true_bgr)) < 0.3
if aug_affine_idx.any():
true_bgr[aug_affine_idx] = T.RandomAffine(degrees=(-1, 1), translate=(0.01, 0.01))(
true_bgr[aug_affine_idx])
del aug_affine_idx
with autocast():
pred_pha, pred_fgr, pred_pha_sm, pred_fgr_sm, pred_err_sm, _ = model_distributed(true_src,
true_bgr, names)
loss = compute_loss(pred_pha, pred_fgr, pred_pha_sm, pred_fgr_sm, pred_err_sm, true_pha,
true_fgr)
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
if rank == 0:
if (i + 1) % args.log_train_loss_interval == 0:
writer.add_scalar('loss', loss, step)
if (i + 1) % args.log_train_images_interval == 0:
writer.add_image('train_pred_pha', make_grid(pred_pha, nrow=5), step)
writer.add_image('train_pred_fgr', make_grid(pred_fgr, nrow=5), step)
writer.add_image('train_pred_com', make_grid(pred_fgr * pred_pha, nrow=5), step)
writer.add_image('train_pred_err', make_grid(pred_err_sm, nrow=5), step)
writer.add_image('train_true_src', make_grid(true_src, nrow=5), step)
del true_pha, true_fgr, true_src, true_bgr
del pred_pha, pred_fgr, pred_pha_sm, pred_fgr_sm, pred_err_sm
if (step + 1) % args.checkpoint_interval == 0:
torch.save(model.state_dict(),
f'checkpoint/{args.model_name}/epoch-{epoch}-iter-{step}-loss{loss}-model.pth')
if rank == 0:
torch.save(model.state_dict(), f'checkpoint/{args.model_name}/epoch-{epoch}-model.pth')
# Clean up
dist.destroy_process_group()
# --------------- Utils ---------------
def compute_loss(pred_pha_lg, pred_fgr_lg, pred_pha_sm, pred_fgr_sm, pred_err_sm, true_pha_lg, true_fgr_lg):
true_pha_sm = kornia.resize(true_pha_lg, pred_pha_sm.shape[2:])
true_fgr_sm = kornia.resize(true_fgr_lg, pred_fgr_sm.shape[2:])
true_msk_lg = true_pha_lg != 0
true_msk_sm = true_pha_sm != 0
return F.l1_loss(pred_pha_lg, true_pha_lg) + \
F.l1_loss(pred_pha_sm, true_pha_sm) + \
F.l1_loss(kornia.sobel(pred_pha_lg), kornia.sobel(true_pha_lg)) + \
F.l1_loss(kornia.sobel(pred_pha_sm), kornia.sobel(true_pha_sm)) + \
F.l1_loss(pred_fgr_lg * true_msk_lg, true_fgr_lg * true_msk_lg) + \
F.l1_loss(pred_fgr_sm * true_msk_sm, true_fgr_sm * true_msk_sm) + \
F.mse_loss(kornia.resize(pred_err_sm, true_pha_lg.shape[2:]), \
kornia.resize(pred_pha_sm, true_pha_lg.shape[2:]).sub(true_pha_lg).abs())
def random_crop(*imgs):
H_src, W_src = imgs[0].shape[2:]
W_tgt = random.choice(range(1024, 2048)) // 4 * 4
H_tgt = random.choice(range(1024, 2048)) // 4 * 4
scale = max(W_tgt / W_src, H_tgt / H_src)
results = []
for img in imgs:
img = kornia.resize(img, (int(H_src * scale), int(W_src * scale)))
img = kornia.center_crop(img, (H_tgt, W_tgt))
results.append(img)
return results
# --------------- Start ---------------
if __name__ == '__main__':
addr = 'localhost'
port = str(random.choice(range(12300, 12400))) # pick a random port.
mp.spawn(train_worker,
nprocs=distributed_num_gpus,
args=(addr, port),
join=True)