forked from PeterL1n/BackgroundMattingV2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
inference_video.py
216 lines (175 loc) · 8.45 KB
/
inference_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
"""
Inference video: Extract matting on video.
Example:
python inference_video.py \
--model-type mattingrefine \
--model-backbone resnet50 \
--model-backbone-scale 0.25 \
--model-refine-mode sampling \
--model-refine-sample-pixels 80000 \
--model-checkpoint "PATH_TO_CHECKPOINT" \
--video-src "PATH_TO_VIDEO_SRC" \
--video-bgr "PATH_TO_VIDEO_BGR" \
--video-resize 1920 1080 \
--output-dir "PATH_TO_OUTPUT_DIR" \
--output-type com fgr pha err ref \
--video-target-bgr "PATH_TO_VIDEO_TARGET_BGR"
"""
import argparse
import cv2
import torch
import os
import shutil
from torch import nn
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torchvision import transforms as T
from torchvision.transforms.functional import to_pil_image
from threading import Thread
from tqdm import tqdm
from PIL import Image
from dataset import VideoDataset, ZipDataset
from dataset import augmentation as A
from model import MattingBase, MattingRefine
from inference_utils import HomographicAlignment
# --------------- Arguments ---------------
parser = argparse.ArgumentParser(description='Inference video')
parser.add_argument('--model-type', type=str, default='mattingbase',choices=['mattingbase', 'mattingrefine'])
parser.add_argument('--model-backbone', type=str,default='resnet50', choices=['resnet101', 'resnet50', 'mobilenetv2'])
parser.add_argument('--model-backbone-scale', type=float, default=0.25)
parser.add_argument('--model-checkpoint', type=str, required=True)
parser.add_argument('--model-refine-mode', type=str, default='sampling', choices=['full', 'sampling', 'thresholding'])
parser.add_argument('--model-refine-sample-pixels', type=int, default=80000)
parser.add_argument('--model-refine-threshold', type=float, default=0.7)
parser.add_argument('--model-refine-kernel-size', type=int, default=3)
parser.add_argument('--video-src', type=str, required=True)
parser.add_argument('--video-bgr', type=str, required=True)
parser.add_argument('--video-target-bgr', type=str, default=None, help="Path to video onto which to composite the output (default to flat green)")
parser.add_argument('--video-resize', type=int, default=None, nargs=2)
parser.add_argument('--device', type=str, choices=['cpu', 'cuda'], default='cuda')
parser.add_argument('--preprocess-alignment', action='store_true')
parser.add_argument('--output-dir', type=str, required=True)
parser.add_argument('--output-types', type=str, required=True, nargs='+', choices=['com', 'pha', 'fgr', 'err', 'ref'])
parser.add_argument('--output-format', type=str, default='video', choices=['video', 'image_sequences'])
args = parser.parse_args()
assert 'err' not in args.output_types or args.model_type in ['mattingbase', 'mattingrefine'], \
'Only mattingbase and mattingrefine support err output'
assert 'ref' not in args.output_types or args.model_type in ['mattingrefine'], \
'Only mattingrefine support ref output'
# --------------- Utils ---------------
class VideoWriter:
def __init__(self, path, frame_rate, width, height):
self.out = cv2.VideoWriter(path, cv2.VideoWriter_fourcc(*'mp4v'), frame_rate, (width, height))
def add_batch(self, frames):
frames = frames.mul(255).byte()
frames = frames.cpu().permute(0, 2, 3, 1).numpy()
for i in range(frames.shape[0]):
frame = frames[i]
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
self.out.write(frame)
class ImageSequenceWriter:
def __init__(self, path, extension):
self.path = path
self.extension = extension
self.index = 0
os.makedirs(path)
def add_batch(self, frames):
Thread(target=self._add_batch, args=(frames, self.index)).start()
self.index += frames.shape[0]
def _add_batch(self, frames, index):
frames = frames.cpu()
for i in range(frames.shape[0]):
frame = frames[i]
frame = to_pil_image(frame)
frame.save(os.path.join(self.path, str(index + i).zfill(5) + '.' + self.extension))
# --------------- Main ---------------
device = torch.device(args.device)
# Load model
if args.model_type == 'mattingbase':
model = MattingBase(args.model_backbone)
if args.model_type == 'mattingrefine':
model = MattingRefine(
args.model_backbone,
args.model_backbone_scale,
args.model_refine_mode,
args.model_refine_sample_pixels,
args.model_refine_threshold,
args.model_refine_kernel_size)
model = model.to(device).eval()
model.load_state_dict(torch.load(args.model_checkpoint, map_location=device), strict=False)
# Load video and background
vid = VideoDataset(args.video_src)
bgr = [Image.open(args.video_bgr).convert('RGB')]
dataset = ZipDataset([vid, bgr], transforms=A.PairCompose([
A.PairApply(T.Resize(args.video_resize[::-1]) if args.video_resize else nn.Identity()),
HomographicAlignment() if args.preprocess_alignment else A.PairApply(nn.Identity()),
A.PairApply(T.ToTensor())
]))
if args.video_target_bgr:
dataset = ZipDataset([dataset, VideoDataset(args.video_target_bgr, transforms=T.ToTensor())])
# Create output directory
if os.path.exists(args.output_dir):
if input(f'Directory {args.output_dir} already exists. Override? [Y/N]: ').lower() == 'y':
shutil.rmtree(args.output_dir)
else:
exit()
os.makedirs(args.output_dir)
# Prepare writers
if args.output_format == 'video':
h = args.video_resize[1] if args.video_resize is not None else vid.height#1080
w = args.video_resize[0] if args.video_resize is not None else vid.width#1920
if 'com' in args.output_types:
com_writer = VideoWriter(os.path.join(args.output_dir, 'com.mp4'), vid.frame_rate, w, h)
if 'pha' in args.output_types:
pha_writer = VideoWriter(os.path.join(args.output_dir, 'pha.mp4'), vid.frame_rate, w, h)
if 'fgr' in args.output_types:
fgr_writer = VideoWriter(os.path.join(args.output_dir, 'fgr.mp4'), vid.frame_rate, w, h)
if 'err' in args.output_types:
err_writer = VideoWriter(os.path.join(args.output_dir, 'err.mp4'), vid.frame_rate, w, h)
if 'ref' in args.output_types:
ref_writer = VideoWriter(os.path.join(args.output_dir, 'ref.mp4'), vid.frame_rate, w, h)
else:
if 'com' in args.output_types:
com_writer = ImageSequenceWriter(os.path.join(args.output_dir, 'com'), 'png')
if 'pha' in args.output_types:
pha_writer = ImageSequenceWriter(os.path.join(args.output_dir, 'pha'), 'jpg')
if 'fgr' in args.output_types:
fgr_writer = ImageSequenceWriter(os.path.join(args.output_dir, 'fgr'), 'jpg')
if 'err' in args.output_types:
err_writer = ImageSequenceWriter(os.path.join(args.output_dir, 'err'), 'jpg')
if 'ref' in args.output_types:
ref_writer = ImageSequenceWriter(os.path.join(args.output_dir, 'ref'), 'jpg')
# Conversion loop
with torch.no_grad():
for input_batch in tqdm(DataLoader(dataset, batch_size=1, pin_memory=True)):
if args.video_target_bgr:
(src, bgr), tgt_bgr = input_batch
tgt_bgr = tgt_bgr.to(device, non_blocking=True)
else:
src, bgr = input_batch
tgt_bgr = torch.tensor([120/255, 255/255, 155/255], device=device).view(1, 3, 1, 1)
src = src.to(device, non_blocking=True)
bgr = bgr.to(device, non_blocking=True)
if args.model_type == 'mattingbase':
pha, fgr, err, _ = model(src, bgr)
elif args.model_type == 'mattingrefine':
pha, fgr, _, _, err, ref = model(src, bgr)
elif args.model_type == 'mattingbm':
pha, fgr = model(src, bgr)
if 'com' in args.output_types:
if args.output_format == 'video':
# Output composite with green background
com = fgr * pha + tgt_bgr * (1 - pha)
com_writer.add_batch(com)
else:
# Output composite as rgba png images
com = torch.cat([fgr * pha.ne(0), pha], dim=1)
com_writer.add_batch(com)
if 'pha' in args.output_types:
pha_writer.add_batch(pha)
if 'fgr' in args.output_types:
fgr_writer.add_batch(fgr)
if 'err' in args.output_types:
err_writer.add_batch(F.interpolate(err, src.shape[2:], mode='bilinear', align_corners=False))
if 'ref' in args.output_types:
ref_writer.add_batch(F.interpolate(ref, src.shape[2:], mode='nearest'))