-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsearch.py
34 lines (30 loc) · 1.08 KB
/
search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
"""
@File : search.py
@Time : 2023/05/30 22:58:00
@Author : Yida Hu
@Version : 1.0
@Desc : None
"""
from langchain import FAISS
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from langchain.chains.question_answering import load_qa_chain
from langchain.llms import OpenAI
from configs.model_config import embedding_model_dict
from loader.txt_loader import UnstructuredTxtLoader
model_name = embedding_model_dict['text2vec-base']
model_kwargs = {'device': 'cpu'}
embeddings = HuggingFaceEmbeddings(model_name=model_name,
model_kwargs=model_kwargs)
loader = UnstructuredTxtLoader()
texts = loader.pdf_txt("data/suzhou.txt")
# embeddings = OpenAIEmbeddings()
doc_search = FAISS.from_texts(texts, embeddings)
chain = load_qa_chain(OpenAI(), chain_type="stuff")
query = "苏州有哪些好玩的地方"
docs = doc_search.similarity_search(query)
answer = chain.run(input_documents=docs, question=query)
print(answer)
print(docs)