forked from Bobholamovic/ChangeDetectionToolbox
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.m
155 lines (132 loc) · 4.26 KB
/
main.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
%% Main script
clear all, close all;
%% Global options
GO_SHOW_CHANGE = true; % Show the difference image (DI)
GO_SHOW_MASK = true; % Show the change map (CM)
GO_SHOW_PRETTIFIED = true; % Show the prettified detection results
GO_SHOW_ROC_CURVE = true; % Plot the ROC curve
GO_BAND_PRE_NORM = false; % Perform a band-wise pre-normalization on the inputs
GO_CONFIG_ROC = {};
GO_VERBOSE = true;
GO_SAVE_RESULTS = false;
GO_OUT_FILE_PATH = './results.xls'; % Path to save the results
% PAUSE MODES:
% -1: resume next iteration when all figures closed;
% -2: press any key to continue
GO_PAUSE_MODE = 1;
PAUSE_EACH_ITER_ = GO_SHOW_CHANGE | GO_SHOW_MASK | GO_SHOW_PRETTIFIED | GO_SHOW_ROC_CURVE;
%% Opt and configure the IMPORTANT ones
%{
Available algorithms: CVA, DPCA, ImageDiff, ImageRatio, ImageRegr, IRMAD, MAD, PCAkMeans, PCDA
Available datasets: AirChangeDataset, BernDataset, OSCDDataset, OttawaDataset, TaizhouDataset
Available binaryzation algorithms: FixedThre, KMeans, OTSU
Available metrics: AUC, FMeasure, Kappa, OA, Recall, UA
%}
ALG = 'MAD'
DATASET = 'TaizhouDataset'
THRE_ALG = 'KMeans'
METRICS = {'OA', 'UA', 'Recall', 'FMeasure', 'AUC', 'Kappa'}
CONFIG_ALG = {};
CONFIG_DATASET = {'D:\\data\\CD\\Taizhou'};
CONFIG_THRE_ALG = {};
CONFIG_METRICS = {{}, {}, {}, {}, {}, {}};
% Check it
if GO_SHOW_ROC_CURVE
[~, loc] = ismember('AUC', METRICS);
if loc == 0
error('AUC was not included in the desired metrics');
end
end
%% Construct objects
alg = Algorithms.(ALG)(CONFIG_ALG{:});
dataset = Datasets.(DATASET)(CONFIG_DATASET{:});
iterDS = Datasets.CDDIterator(dataset);
threAlg = ThreAlgs.(THRE_ALG)(CONFIG_THRE_ALG{:});
nMetrics = length(METRICS);
metrics = cell(1, nMetrics);
for ii = 1:nMetrics
metrics{ii} = Metrics.(METRICS{ii})(CONFIG_METRICS{ii}{:});
end
%% Main loop
while(iterDS.hasNext())
% Fetch data
[t1, t2, ref] = iterDS.nextChunk();
if GO_BAND_PRE_NORM
% Perform a band-wise z-score normalization before any further
% algorithm is applied
fcnNorm = @Utilities.normMeanStd;
[t1, t2] = deal(fcnNorm(double(t1)), fcnNorm(double(t2)));
end
% Make difference image
DI = alg.detectChange(t1, t2);
% Segment
CM = threAlg.segment(DI);
% Measure
cellfun(@(obj) obj.update(CM, ref, DI), metrics);
if GO_VERBOSE
for ii = 1:nMetrics
m = metrics{ii};
fprintf('type: %s\n', METRICS{ii});
fprintf('\tnewest: %f\n', m.val(end));
fprintf('\taverage: %f\n', m.avg);
end
fprintf('\n')
end
if PAUSE_EACH_ITER_
handles = [];
if GO_SHOW_CHANGE
figure('Name', 'Change Map'),
chns = size(DI, 3);
if chns ~= 1 && chns ~=3
imshow(Utilities.normMinMax(Utilities.mergeAvg(DI)));
else
imshow(Utilities.normMinMax(DI));
end
handles = [handles, gcf];
end
if GO_SHOW_MASK
figure('Name', 'Change Mask'),
imshow(CM);
handles = [handles, gcf];
end
if GO_SHOW_PRETTIFIED
figure('Name', 'Prettified Change Map'),
imshow(Utilities.pretty(DI, CM, ref));
handles = [handles, gcf];
end
if GO_SHOW_ROC_CURVE
if ~exist('aucer', 'var')
aucer = metrics{loc};
end
fig = aucer.plotROC(GO_CONFIG_ROC{:});
handles = [handles, fig];
end
if (iterDS.hasNext())
if GO_PAUSE_MODE == 1
for h = handles
waitfor(h);
end
elseif GO_PAUSE_MODE == 2
pause
else
;
end
end
end
end
%% Collate and save results
results = struct('name', alg.algName, 'threAlg', threAlg.algName, 'dataset', DATASET);
for ii = 1:nMetrics
results.(METRICS{ii}) = metrics{ii}.avg;
end
if GO_SAVE_RESULTS
[~, ~, ext] = fileparts(GO_OUT_FILE_PATH);
switch ext
case '.mat'
save(GO_OUT_FILE_PATH, 'results');
case {'.xls', '.xlsx'}
writetable(struct2table(results), GO_OUT_FILE_PATH);
otherwise
error('Unsupported type of file');
end
end