-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathlosses.py
301 lines (235 loc) · 11.2 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
# coding=utf-8
# Copyright 2020 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""All functions related to loss computation and optimization.
"""
import torch
import torch.optim as optim
import numpy as np
from models import utils as mutils
from sde_lib import ConsistencyFM
def get_optimizer(config, params):
"""Returns a flax optimizer object based on `config`."""
if config.optim.optimizer == 'Adam':
optimizer = optim.Adam(params, lr=config.optim.lr, betas=(config.optim.beta1, 0.999), eps=config.optim.eps,
weight_decay=config.optim.weight_decay)
else:
raise NotImplementedError(
f'Optimizer {config.optim.optimizer} not supported yet!')
return optimizer
def optimization_manager(config):
"""Returns an optimize_fn based on `config`."""
def optimize_fn(optimizer, params, step, lr=config.optim.lr,
warmup=config.optim.warmup,
grad_clip=config.optim.grad_clip):
"""Optimizes with warmup and gradient clipping (disabled if negative)."""
if warmup > 0:
for g in optimizer.param_groups:
g['lr'] = lr * np.minimum(step / warmup, 1.0)
if grad_clip >= 0:
torch.nn.utils.clip_grad_norm_(params, max_norm=grad_clip)
optimizer.step()
return optimize_fn
def get_rectified_flow_loss_fn(sde, train, reduce_mean=True, eps=1e-3):
"""Create a loss function for training with rectified flow.
Args:
sde: An `sde_lib.SDE` object that represents the forward SDE.
train: `True` for training loss and `False` for evaluation loss.
reduce_mean: If `True`, average the loss across data dimensions. Otherwise sum the loss across data dimensions.
eps: A `float` number. The smallest time step to sample from.
Returns:
A loss function.
"""
reduce_op = torch.mean if reduce_mean else lambda *args, **kwargs: 0.5 * torch.sum(*args, **kwargs)
def loss_fn(model, batch):
"""Compute the loss function.
Args:
model: A velocity model.
batch: A mini-batch of training data.
Returns:
loss: A scalar that represents the average loss value across the mini-batch.
"""
if sde.reflow_flag:
z0 = batch[0]
data = batch[1]
batch = data.detach().clone()
else:
z0 = sde.get_z0(batch).to(batch.device)
if sde.reflow_flag:
if sde.reflow_t_schedule=='t0': ### distill for t = 0 (k=1)
t = torch.zeros(batch.shape[0], device=batch.device) * (sde.T - eps) + eps
elif sde.reflow_t_schedule=='t1': ### reverse distill for t=1 (fast embedding)
t = torch.ones(batch.shape[0], device=batch.device) * (sde.T - eps) + eps
elif sde.reflow_t_schedule=='uniform': ### train new rectified flow with reflow
t = torch.rand(batch.shape[0], device=batch.device) * (sde.T - eps) + eps
elif type(sde.reflow_t_schedule)==int: ### k > 1 distillation
t = torch.randint(0, sde.reflow_t_schedule, (batch.shape[0], ), device=batch.device) * (sde.T - eps) / sde.reflow_t_schedule + eps
else:
assert False, 'Not implemented'
else:
### standard rectified flow loss
t = torch.rand(batch.shape[0], device=batch.device) * (sde.T - eps) + eps
t_expand = t.view(-1, 1, 1, 1).repeat(1, batch.shape[1], batch.shape[2], batch.shape[3])
perturbed_data = t_expand * batch + (1.-t_expand) * z0
target = batch - z0
model_fn = mutils.get_model_fn(model, train=train)
score = model_fn(perturbed_data, t*999) ### Copy from models/utils.py
if sde.reflow_flag:
### we found LPIPS loss is the best for distillation when k=1; but good to have a try
if sde.reflow_loss=='l2':
### train new rectified flow with reflow or distillation with L2 loss
losses = torch.square(score - target)
elif sde.reflow_loss=='lpips':
assert sde.reflow_t_schedule=='t0'
losses = sde.lpips_model(z0 + score, batch)
elif sde.reflow_loss=='lpips+l2':
assert sde.reflow_t_schedule=='t0'
lpips_losses = sde.lpips_model(z0 + score, batch).view(batch.shape[0], 1)
l2_losses = torch.square(score - target).view(batch.shape[0], -1).mean(dim=1, keepdim=True)
losses = lpips_losses + l2_losses
else:
assert False, 'Not implemented'
else:
losses = torch.square(score - target)
losses = reduce_op(losses.reshape(losses.shape[0], -1), dim=-1)
loss = torch.mean(losses)
return loss
return loss_fn
def get_consistency_flow_matching_loss_fn(sde, train, reduce_mean=True, eps=1e-3):
"""Create a loss function for training with rectified flow.
Args:
sde: An `sde_lib.SDE` object that represents the forward SDE.
train: `True` for training loss and `False` for evaluation loss.
reduce_mean: If `True`, average the loss across data dimensions. Otherwise sum the loss across data dimensions.
eps: A `float` number. The smallest time step to sample from.
Returns:
A loss function.
"""
reduce_op = torch.mean if reduce_mean else lambda *args, **kwargs: 0.5 * torch.sum(*args, **kwargs)
hyperparameter = sde.consistencyfm_hyperparameters
def loss_fn(model, batch):
"""Compute the loss function.
Args:
model: A velocity model.
batch: A mini-batch of training data.
Returns:
loss: A scalar that represents the average loss value across the mini-batch.
"""
assert sde.reflow_flag == False, "not implemented"
z0 = sde.get_z0(batch).to(batch.device)
t = torch.rand(batch.shape[0], device=batch.device) * (sde.T - eps) + eps
r = torch.clamp(t + hyperparameter["delta"], max=1.0)
t_expand = t.view(-1, 1, 1, 1).repeat(1, batch.shape[1], batch.shape[2], batch.shape[3])
r_expand = r.view(-1, 1, 1, 1).repeat(1, batch.shape[1], batch.shape[2], batch.shape[3])
xt = t_expand * batch + (1.-t_expand) * z0
xr = r_expand * batch + (1.-r_expand) * z0
segments = torch.linspace(0, 1, hyperparameter["num_segments"] + 1, device=batch.device)
seg_indices = torch.searchsorted(segments, t, side="left").clamp(min=1) # .clamp(min=1) prevents the inclusion of 0 in indices.
segment_ends = segments[seg_indices]
segment_ends_expand = segment_ends.view(-1, 1, 1, 1).repeat(1, batch.shape[1], batch.shape[2], batch.shape[3])
x_at_segment_ends = segment_ends_expand * batch + (1.-segment_ends_expand) * z0
def f_euler(t_expand, segment_ends_expand, xt, vt):
return xt + (segment_ends_expand - t_expand) * vt
def threshold_based_f_euler(t_expand, segment_ends_expand, xt, vt, threshold, x_at_segment_ends):
if (threshold, int) and threshold == 0:
return x_at_segment_ends
less_than_threshold = t_expand < threshold
res = (
less_than_threshold * f_euler(t_expand, segment_ends_expand, xt, vt)
+ (~less_than_threshold) * x_at_segment_ends
)
return res
model.train(train)
model_fn = model
rng_state = torch.cuda.get_rng_state()
vt = model_fn(xt, t*999)
torch.cuda.set_rng_state(rng_state) # Shared Dropout Mask
with torch.no_grad():
if (isinstance(hyperparameter["boundary"], int)
and hyperparameter["boundary"] == 0): # when hyperparameter["boundary"] == 0, vr is not needed
vr = None
else:
vr = model_fn(xr, r*999)
vr = torch.nan_to_num(vr)
ft = f_euler(t_expand, segment_ends_expand, xt, vt)
fr = threshold_based_f_euler(r_expand, segment_ends_expand, xr, vr, hyperparameter["boundary"], x_at_segment_ends)
##### loss #####
losses_f = torch.square(ft - fr)
losses_f = reduce_op(losses_f.reshape(losses_f.shape[0], -1), dim=-1)
def masked_losses_v(vt, vr, threshold, segment_ends, t):
if (threshold, int) and threshold == 0:
return 0
less_than_threshold = t_expand < threshold
far_from_segment_ends = (segment_ends - t) > 1.01 * hyperparameter["delta"]
far_from_segment_ends = far_from_segment_ends.view(-1, 1, 1, 1).repeat(1, batch.shape[1], batch.shape[2], batch.shape[3])
losses_v = torch.square(vt - vr)
losses_v = less_than_threshold * far_from_segment_ends * losses_v
losses_v = reduce_op(losses_v.reshape(losses_v.shape[0], -1), dim=-1)
return losses_v
losses_v = masked_losses_v(vt, vr, hyperparameter["boundary"], segment_ends, t)
loss = torch.mean(
losses_f + hyperparameter["alpha"] * losses_v
)
return loss
return loss_fn
def get_step_fn(sde, train, optimize_fn=None, reduce_mean=False, continuous=True, likelihood_weighting=False):
"""Create a one-step training/evaluation function.
Args:
sde: An `sde_lib.SDE` object that represents the forward SDE.
optimize_fn: An optimization function.
reduce_mean: If `True`, average the loss across data dimensions. Otherwise sum the loss across data dimensions.
continuous: `True` indicates that the model is defined to take continuous time steps.
likelihood_weighting: If `True`, weight the mixture of score matching losses according to
https://arxiv.org/abs/2101.09258; otherwise use the weighting recommended by our paper.
Returns:
A one-step function for training or evaluation.
"""
if continuous:
loss_fn = get_sde_loss_fn(sde, train, reduce_mean=reduce_mean,
continuous=True, likelihood_weighting=likelihood_weighting)
else:
assert not likelihood_weighting, "Likelihood weighting is not supported for original SMLD/DDPM training."
if isinstance(sde, ConsistencyFM):
loss_fn = get_consistency_flow_matching_loss_fn(sde, train, reduce_mean=reduce_mean)
else:
raise ValueError(f"Discrete training for {sde.__class__.__name__} is not recommended.")
def step_fn(state, batch):
"""Running one step of training or evaluation.
This function will undergo `jax.lax.scan` so that multiple steps can be pmapped and jit-compiled together
for faster execution.
Args:
state: A dictionary of training information, containing the score model, optimizer,
EMA status, and number of optimization steps.
batch: A mini-batch of training/evaluation data.
Returns:
loss: The average loss value of this state.
"""
model = state['model']
if train:
optimizer = state['optimizer']
optimizer.zero_grad()
loss = loss_fn(model, batch)
loss.backward()
optimize_fn(optimizer, model.parameters(), step=state['step'])
state['step'] += 1
state['ema'].update(model.parameters())
else:
with torch.no_grad():
ema = state['ema']
ema.store(model.parameters())
ema.copy_to(model.parameters())
loss = loss_fn(model, batch)
ema.restore(model.parameters())
return loss
return step_fn