-
Notifications
You must be signed in to change notification settings - Fork 55
/
Copy pathbot_pipeline.py
217 lines (184 loc) · 9.64 KB
/
bot_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import transformers
import torch
import http.client
import json
from accelerate import infer_auto_device_map
from meta_buffer_utilis import meta_distiller_prompt,extract_and_execute_code
from test_templates import game24,checkmate,word_sorting
from meta_buffer import MetaBuffer
from openai import OpenAI
class Pipeline:
def __init__(self,model_id,api_key=None,base_url='https://api.openai.com/v1/'):
self.api = False
self.local = False
self.base_url = base_url
self.model_id = model_id
if api_key is None:
self.local = True
self.pipeline = transformers.pipeline(
"text-generation",
model=self.model_id,
model_kwargs={"torch_dtype": torch.bfloat16},
device_map = 'auto'
)
else:
self.api = True
self.api_key = api_key
def get_respond(self,meta_prompt,user_prompt):
if self.api:
client = OpenAI(api_key=self.api_key,base_url= self.base_url)
completion = client.chat.completions.create(
model=self.model_id,
messages=[
{"role": "system", "content": meta_prompt},
{"role": "user", "content": user_prompt},
],
)
response = completion.choices[0].message.content
return response
else:
messages = [
{"role": "system", "content": meta_prompt},
{"role": "user", "content": user_prompt},
]
prompt = self.pipeline.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
terminators = [
self.pipeline.tokenizer.eos_token_id,
self.pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = self.pipeline(
prompt,
max_new_tokens=2048,
eos_token_id=terminators,
do_sample=True,
temperature=0.4,
top_p=0.9,
)
respond = outputs[0]["generated_text"][len(prompt):]
return respond
class BoT:
def __init__(self, user_input,problem_id=0,api_key=None,model_id='gpt-4o-mini',embedding_model='text-embedding-3-large',need_check=False,base_url='https://api.openai.com/v1/',rag_dir=None):
self.api_key = api_key
self.model_id = model_id
self.embedding_model = embedding_model
self.base_url = base_url
self.pipeline = Pipeline(self.model_id,self.api_key,self.base_url)
self.meta_buffer = MetaBuffer(self.model_id,self.embedding_model,self.api_key,base_url=self.base_url)
self.user_input = user_input
# Only for test use, stay tuned for our update
self.problem_id = problem_id
self.need_check = need_check
with open("./math.txt") as f:
self.meta_buffer.rag.insert(f.read())
def update_input(self,new_input):
self.user_input = new_input
def problem_distillation(self):
print(f'User prompt:{self.user_input}')
self.distilled_information = self.pipeline.get_respond(meta_distiller_prompt, self.user_input)
print(f'Distilled information:{self.distilled_information}')
def buffer_retrieve(self):
# For initial test use, we will later update the embedding retrieval version to support more, trail version
if self.problem_id == 0:
self.thought_template = game24
elif self.problem_id == 1:
self.thought_template = checkmate
elif self.problem_id == 2:
self.thought_template = word_sorting
def buffer_instantiation(self):
self.buffer_prompt = """
You are an expert in problem analysis and can apply previous problem-solving approaches to new issues. The user will provide a specific task description and a meta buffer that holds multiple thought templates that will help to solve the problem. Your goal is to first extract most relevant thought template from meta buffer, analyze the user's task and generate a specific solution based on the thought template. Give a final answer that is easy to extract from the text.
"""
input = self.buffer_prompt + self.distilled_information
self.result = self.meta_buffer.retrieve_and_instantiate(input)
print(self.result)
def buffer_manager(self):
self.problem_solution_pair = self.user_input + self.result
self.thought_distillation()
self.meta_buffer.dynamic_update(self.distilled_thought)
def thought_distillation(self):
thought_distillation_prompt = """You are an expert in problem analysis and generalization. Your task is to follow the format of thought template below and distill a high-level thought template to solve similar problems:
Example thought template:
### Problem Type 20: Solution Concentration Problem
**Definition**: This type of problem involves the relationship between a solvent (water or another liquid), solute, solution, and concentration.
**Quantitative Relationships**:
- Solution = Solvent + Solute
- Concentration = Solute ÷ Solution × 100%
**Solution Strategy**: Use the formulas and their variations to analyze and calculate the problem.
**Example**: There is 50 grams of a 16% sugar solution. How much water needs to be added to dilute it to a 10% sugar solution?
**Solution**:
Using the formula:
50 × 16% ÷ 10% - 50 = 30 grams of water need to be added.
It should be noted that you should only return the thought template without any extra output.
"""
self.distilled_thought = self.pipeline.get_respond(thought_distillation_prompt, self.problem_solution_pair)
print('Distilled thought: ',self.distilled_thought)
def reasoner_instantiation(self):
# Temporay using selection method to select answer extract method
problem_id_list = [0,1,2]
self.instantiation_instruct = """
You are an expert in problem analysis and can apply previous problem-solving approaches to new issues. The user will provide a specific task description and a thought template. Your goal is to analyze the user's task and generate a specific solution based on the thought template. If the instantiated solution involves Python code, only provide the code and let the compiler handle it. If the solution does not involve code, provide a final answer that is easy to extract from the text.
It should be noted that all the python code should be within one code block, the answer should not include more than one code block! And strictly follow the thought-template to instantiate the python code but you should also adjust the input parameter according to the user input!
"""
self.formated_input = f"""
Distilled information:
{self.distilled_information}
User Input:
{self.user_input}
Thought template:
{self.thought_template}
Instantiated Solution:
Please analyze the above user task description and thought template, and generate a specific, detailed solution. If the solution involves Python code, only provide the code. If not, provide a clear and extractable final answer.
"""
self.inspector_prompt = """
You are an excellent python programming master who are proficient in analyzing and editing python code, and you are also good at understanding the real-world problem. Your task is:
1. Analyze the given python code
2. Edit the input code to make sure the edited code is correct and could run and solve the problem correctly.
Your respond should follow the format below:
```python
## Edited code here
```
"""
self.result = self.pipeline.get_respond(self.instantiation_instruct,self.formated_input)
print(f'Instantiated reasoning result: {self.result}')
if self.problem_id in problem_id_list:
self.final_result, code_str = extract_and_execute_code(self.result)
if self.need_check:
self.count = 0
self.inter_input = f"""
User_input:{self.user_input}
{code_str}
{self.final_result}
"""
self.inter_result = self.final_result
while(('An error occurred' in self.inter_result) or (self.inter_result == '') or (self.inter_result == 'None')):
print('The code cannot be executed correctly, here we continue the edit phase:',self.inter_result)
print('The problem code is:',code_str)
self.inter_input = self.pipeline.get_respond(self.inspector_prompt,self.inter_input)
print(self.inter_input)
self.inter_result, inter_code_str = extract_and_execute_code(self.inter_input)
self.inter_input = f"""
User_input:{self.user_input}
{inter_code_str}
The result of code execution: {self.inter_result}
"""
self.count = self.count + 1
if self.count > 3:
break
self.final_result = self.inter_result
print(f'The result of code execution: {self.final_result}')
else:
self.final_result = self.result
def bot_run(self):
self.problem_distillation()
self.buffer_retrieve()
self.reasoner_instantiation()
return self.final_result
def bot_inference(self):
self.problem_distillation()
self.buffer_instantiation()
self.buffer_manager()
print('Final results:',self.result)