-
Notifications
You must be signed in to change notification settings - Fork 102
/
Copy pathmllm.py
84 lines (76 loc) · 3.05 KB
/
mllm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import requests
import json
import os
from transformers import AutoTokenizer
import transformers
import torch
import re
import torch
from transformers import LlamaForCausalLM, LlamaTokenizer
def GPT4(prompt,key):
url = "https://api.openai.com/v1/chat/completions"
api_key = key
with open('template/template.txt', 'r') as f:
template=f.readlines()
user_textprompt=f"Caption:{prompt} \n Let's think step by step:"
textprompt= f"{' '.join(template)} \n {user_textprompt}"
payload = json.dumps({
"model": "gpt-4o", # we suggest to use the latest version of GPT, you can also use gpt-4-vision-preivew, see https://platform.openai.com/docs/models/ for details.
"messages": [
{
"role": "user",
"content": textprompt
}
]
})
headers = {
'Accept': 'application/json',
'Authorization': f'Bearer {api_key}',
'User-Agent': 'Apifox/1.0.0 (https://apifox.com)',
'Content-Type': 'application/json'
}
print('waiting for GPT-4 response')
response = requests.request("POST", url, headers=headers, data=payload)
obj=response.json()
text=obj['choices'][0]['message']['content']
print(text)
# Extract the split ratio and regional prompt
return get_params_dict(text)
def local_llm(prompt,version,model_path=None):
if model_path==None:
model_id = "Llama-2-13b-chat-hf"
else:
model_id=model_path
print('Using model:',model_id)
tokenizer = LlamaTokenizer.from_pretrained(model_id)
model = LlamaForCausalLM.from_pretrained(model_id, load_in_8bit=False, device_map='auto', torch_dtype=torch.float16)
with open('template/template.txt', 'r') as f:
template=f.readlines()
user_textprompt=f"Caption:{prompt} \n Let's think step by step:"
textprompt= f"{' '.join(template)} \n {user_textprompt}"
model_input = tokenizer(textprompt, return_tensors="pt").to("cuda")
model.eval()
with torch.no_grad():
print('waiting for LLM response')
res = model.generate(**model_input, max_new_tokens=1024)[0]
output=tokenizer.decode(res, skip_special_tokens=True)
output = output.replace(textprompt,'')
return get_params_dict(output)
def get_params_dict(output_text):
response = output_text
# Find Final split ratio
split_ratio_match = re.search(r"Final split ratio: ([\d.,;]+)", response)
if split_ratio_match:
final_split_ratio = split_ratio_match.group(1)
print("Final split ratio:", final_split_ratio)
else:
print("Final split ratio not found.")
# Find Regioanl Prompt
prompt_match = re.search(r"Regional Prompt: (.*?)(?=\n\n|\Z)", response, re.DOTALL)
if prompt_match:
regional_prompt = prompt_match.group(1).strip()
print("Regional Prompt:", regional_prompt)
else:
print("Regional Prompt not found.")
image_region_dict = {'Final split ratio': final_split_ratio, 'Regional Prompt': regional_prompt}
return image_region_dict