-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmaking_sense.py
207 lines (201 loc) · 9.1 KB
/
making_sense.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import torch
from torch.nn import CrossEntropyLoss
from transformers import *
import numpy as np
import math
# OPTIONAL: if you want to have more information on what's happening, activate the logger as follows
import logging
import os
import sys
logging.basicConfig(level=logging.INFO)
os.environ["CUDA_VISIBLE_DEVICES"]="0"
def uni_predict(text, model, tokenizer):
# Tokenized input
# text = "[CLS] I got restricted because Tom reported my reply [SEP]"
text = text
tokenized_text = tokenizer.tokenize(text)
sentence_score = 0
indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
length = len(tokenized_text)
tokens_tensor = torch.tensor([indexed_tokens])
tokens_tensor = tokens_tensor.to('cuda')
#masked_tensor = torch.tensor([masked_index])
with torch.no_grad():
outputs = model(tokens_tensor, labels= tokens_tensor)
loss = outputs[0]
sentence_score = -loss
return sentence_score
def bert_predict(text, model, tokenizer):
# Tokenized input
# text = "[CLS] I got restricted because Tom reported my reply [SEP]"
text = "[CLS] " + text + " [SEP]" #special token for BERT, RoBERTa
tokenized_text = tokenizer.tokenize(text)
sentence_score = 0
length = len(tokenized_text)-2
for masked_index in range(1,len(tokenized_text)-1):
# Mask a token that we will try to predict back with `BertForMaskedLM`
masked_word = tokenized_text[masked_index]
#tokenized_text[masked_index] = '<mask>' #special token for XLNet
tokenized_text[masked_index] = '[MASK]' #special token for BERT, RoBerta
# Convert token to vocabulary indices
indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
index = torch.tensor(tokenizer.convert_tokens_to_ids(masked_word))
tokens_tensor = torch.tensor([indexed_tokens])
tokens_tensor = tokens_tensor.to('cuda')
index = index.to('cuda')
#masked_tensor = torch.tensor([masked_index])
with torch.no_grad():
outputs = model(tokens_tensor)
prediction_scores = outputs[0]
prediction_scores = prediction_scores.view(-1, model.config.vocab_size)
prediction_scores = prediction_scores[masked_index].unsqueeze(0)
loss_fct = CrossEntropyLoss(ignore_index=-1) # -1 index = padding token
masked_lm_loss = loss_fct(prediction_scores, index.view(-1))
tokenized_text[masked_index] = masked_word
sentence_score -= masked_lm_loss.item()
tokenized_text[masked_index] = masked_word
sentence_score = sentence_score/length
return sentence_score
def ro_predict(text, model, tokenizer):
# Tokenized input
# text = "[CLS] I got restricted because Tom reported my reply [SEP]"
text = '<s> '+text+ ' </s>' #special token for RoBERTa
tokenized_text = tokenizer.tokenize(text)
sentence_score = 0
length = len(tokenized_text)-2
for masked_index in range(1,len(tokenized_text)-1):
# Mask a token that we will try to predict back with `BertForMaskedLM`
masked_word = tokenized_text[masked_index]
#tokenized_text[masked_index] = '<mask>' #special token for XLNet
tokenized_text[masked_index] = '<mask>' #special token for BERT, RoBerta
# Convert token to vocabulary indices
indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
index = torch.tensor(tokenizer.convert_tokens_to_ids(masked_word))
tokens_tensor = torch.tensor([indexed_tokens])
tokens_tensor = tokens_tensor.to('cuda')
index = index.to('cuda')
#masked_tensor = torch.tensor([masked_index])
with torch.no_grad():
outputs = model(tokens_tensor)
prediction_scores = outputs[0]
prediction_scores = prediction_scores.view(-1, model.config.vocab_size)
prediction_scores = prediction_scores[masked_index].unsqueeze(0)
loss_fct = CrossEntropyLoss(ignore_index=-1) # -1 index = padding token
masked_lm_loss = loss_fct(prediction_scores, index.view(-1))
tokenized_text[masked_index] = masked_word
sentence_score -= masked_lm_loss.item()
tokenized_text[masked_index] = masked_word
sentence_score = sentence_score/length
return sentence_score
def xlnet_predict(text, model, tokenizer):
tokenized_text = tokenizer.tokenize(text)
sentence_score = 0
#Sprint(len(tokenized_text))
for masked_index in range(0,len(tokenized_text)):
masked_word = tokenized_text[masked_index]
masked_word = tokenized_text[masked_index]
tokenized_text[masked_index] = '<mask>'
input_ids = torch.tensor(tokenizer.convert_tokens_to_ids(tokenized_text)).unsqueeze(0)
index = torch.tensor(tokenizer.convert_tokens_to_ids(masked_word))
perm_mask = torch.zeros((1, input_ids.shape[1], input_ids.shape[1]), dtype=torch.float)
perm_mask[:, :, masked_index] = 1.0 # Previous tokens don't see last token
target_mapping = torch.zeros((1, 1, input_ids.shape[1]), dtype=torch.float) # Shape [1, 1, seq_length] => let's predict one token
target_mapping[0, 0, masked_index] = 1.0 # Our first (and only) prediction will be the last token of the sequence (the masked token)
input_ids = input_ids.to('cuda')
perm_mask = perm_mask.to('cuda')
target_mapping = target_mapping.to('cuda')
index = index.to('cuda')
with torch.no_grad():
outputs = model(input_ids, perm_mask=perm_mask, target_mapping=target_mapping, labels = index)
next_token_logits = outputs[0]
length = len(tokenized_text)
# predict_list = predictions[0, masked_index]
sentence_score -= next_token_logits.item()
tokenized_text[masked_index] = masked_word
return sentence_score/(length)
test = sys.argv[1]
model_type = sys.argv[2]
robust = sys.argv[3]
if model_type=='xlnet':
# For XLNet
tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased')
model = XLNetLMHeadModel.from_pretrained('xlnet-large-cased')
elif model_type=='bert':
# For BERT
tokenizer = BertTokenizer.from_pretrained('bert-large-uncased')
model = BertForMaskedLM.from_pretrained('bert-large-uncased')
elif model_type=='roberta':
tokenizer = RobertaTokenizer.from_pretrained('roberta-large')
model = RobertaForMaskedLM.from_pretrained('roberta-large')
elif model_type=='gpt':
tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt')
model = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt')
elif model_type=='gpt-2':
tokenizer = GPT2Tokenizer.from_pretrained('gpt2-medium')
model = GPT2LMHeadModel.from_pretrained('gpt2-medium')
model.to('cuda')
model.eval()
if robust=='r':
with open("CATS/Robust_commonsense_test/{}.txt".format(test), "r") as f:
file = f.readlines()
num = len(file)
count = 0
curr = 0
for line in file:
line = line.strip().split("\001")
label_1 = int(line[0])
label_2 = int(line[3])
score_list = []
for sentence in line:
if not len(sentence)==1:
if model_type=='xlnet':
score = xlnet_predict(sentence, model=model, tokenizer=tokenizer)
elif model_type=='bert':
score = bert_predict(sentence, model=model, tokenizer=tokenizer)
elif model_type=='roberta':
score = ro_predict(sentence, model=model, tokenizer=tokenizer)
else:
score = uni_predict(sentence, model=model, tokenizer=tokenizer)
score_list.append(score)
#print(score_list)
score_list_1 = score_list[:2]
score_list_2 = score_list[2:]
predict_label_1 = score_list_1.index(max(score_list_1))
predict_label_2 = score_list_2.index(max(score_list_2))
if predict_label_1==label_1 and predict_label_2==label_2:
count += 1
elif predict_label_1!=label_1 and predict_label_2!=label_2:
count += 1
curr += 1
#print (count, curr, count/curr)
print(test+' '+model_type+':-------------------')
print (count/num)
else:
with open("CATS/commonsense_ability_test/{}.txt".format(test), "r") as f:
file = f.readlines()
num = len(file)
count = 0
curr = 0
for line in file:
line = line.strip().split("\001")
label = int(line[0])
score_list = []
for sentence in line[1:]:
if model_type=='xlnet':
score = xlnet_predict(sentence, model=model, tokenizer=tokenizer)
elif model_type=='bert':
score = bert_predict(sentence, model=model, tokenizer=tokenizer)
elif model_type=='roberta':
score = ro_predict(sentence, model=model, tokenizer=tokenizer)
else:
score = uni_predict(sentence, model=model, tokenizer=tokenizer)
score_list.append(score)
#print(score_list)
predict_label = score_list.index(max(score_list))
#print(predict_label, label)
if predict_label==label:
count += 1
curr += 1
#print (count, curr, count/curr)
print(test+' '+model_type+':-------------------')
print (count/num)