-
Notifications
You must be signed in to change notification settings - Fork 68
/
Copy pathdataset.py
265 lines (240 loc) · 9.91 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import pandas as pd
from rdkit import Chem
from rdkit import rdBase
from rdkit.Chem import Recap, BRICS
from rdkit.Chem.MolStandardize import rdMolStandardize
from tqdm import tqdm
from utils import VocSmiles as Voc
import utils
import re
import numpy as np
from itertools import combinations
import gzip
import getopt, sys
rdBase.DisableLog('rdApp.info')
rdBase.DisableLog('rdApp.warning')
def corpus(input, output, suffix='sdf'):
if suffix =='sdf':
inf = gzip.open(input)
mols = Chem.ForwardSDMolSupplier(inf)
# mols = [mol for mol in suppl]
else:
df = pd.read_table(input).Smiles.dropna()
mols = [Chem.MolFromSmiles(s) for s in df]
voc = Voc('data/voc_smiles.txt')
charger = rdMolStandardize.Uncharger()
chooser = rdMolStandardize.LargestFragmentChooser()
disconnector = rdMolStandardize.MetalDisconnector()
normalizer = rdMolStandardize.Normalizer()
words = set()
canons = []
tokens = []
smiles = set()
for mol in tqdm(mols):
try:
mol = disconnector.Disconnect(mol)
mol = normalizer.normalize(mol)
mol = chooser.choose(mol)
mol = charger.uncharge(mol)
mol = disconnector.Disconnect(mol)
mol = normalizer.normalize(mol)
smileR = Chem.MolToSmiles(mol, 0)
smiles.add(Chem.CanonSmiles(smileR))
except:
print('Parsing Error:') #, Chem.MolToSmiles(mol))
for smile in tqdm(smiles):
token = voc.split(smile) + ['EOS']
if {'C', 'c'}.isdisjoint(token):
print('Warning:', smile)
continue
if not {'[Na]', '[Zn]'}.isdisjoint(token):
print('Redudent', smile)
continue
if 10 < len(token) <= 100:
words.update(token)
canons.append(smile)
tokens.append(' '.join(token))
log = open(output + '_voc.txt', 'w')
log.write('\n'.join(sorted(words)))
log.close()
log = pd.DataFrame()
log['Smiles'] = canons
log['Token'] = tokens
log.drop_duplicates(subset='Smiles')
log.to_csv(output + '_corpus.txt', sep='\t', index=False)
def graph_corpus(input, output, suffix='sdf'):
metals = {'Na', 'Zn', 'Li', 'K', 'Ca', 'Mg', 'Ag', 'Cs', 'Ra', 'Rb', 'Al', 'Sr', 'Ba', 'Bi'}
voc = utils.VocGraph('data/voc_atom.txt')
inf = gzip.open(input)
if suffix == 'sdf':
mols = Chem.ForwardSDMolSupplier(inf)
total = 2e6
else:
mols = pd.read_table(input).drop_duplicates(subset=['Smiles']).dropna(subset=['Smiles'])
total = len(mols)
mols = mols.iterrows()
vals = {}
exps = {}
codes, ids = [], []
chooser = rdMolStandardize.LargestFragmentChooser()
disconnector = rdMolStandardize.MetalDisconnector()
normalizer = rdMolStandardize.Normalizer()
for i, mol in enumerate(tqdm(mols, total=total)):
if mol is None: continue
if suffix != 'sdf':
idx = mol[1]['Molecule ChEMBL ID']
mol = Chem.MolFromSmiles(mol[1].Smiles)
else:
idx = mol.GetPropsAsDict()
idx = idx['chembl_id']
try:
mol = disconnector.Disconnect(mol)
mol = normalizer.normalize(mol)
mol = chooser.choose(mol)
mol = disconnector.Disconnect(mol)
mol = normalizer.normalize(mol)
except:
print(idx)
symb = [a.GetSymbol() for a in mol.GetAtoms()]
# Nr. of the atoms
bonds = mol.GetBonds()
if len(bonds) < 4 or len(bonds) >= 63: continue
if {'C'}.isdisjoint(symb): continue
if not metals.isdisjoint(symb): continue
smile = Chem.MolToSmiles(mol)
try:
s0 = smile.replace('[O]', 'O').replace('[C]', 'C') \
.replace('[N]', 'N').replace('[B]', 'B') \
.replace('[2H]', '[H]').replace('[3H]', '[H]')
s0 = Chem.CanonSmiles(s0, 0)
code = voc.encode([smile])
s1 = voc.decode(code)[0]
assert s0 == s1
codes.append(code[0].reshape(-1).tolist())
ids.append(idx)
except Exception as ex:
print(ex)
print('Parse Error:', idx)
df = pd.DataFrame(codes, index=ids, columns=['C%d' % i for i in range(64*4)])
df.to_csv(output, sep='\t', index=True)
print(vals)
print(exps)
def pair_frags(fname, out, method='Recap', is_mf=True):
smiles = pd.read_table(fname).Smiles.dropna()
pairs = []
for i, smile in enumerate(tqdm(smiles)):
smile = utils.clean_mol(smile)
mol = Chem.MolFromSmiles(smile)
if method == 'recap':
frags = np.array(sorted(Recap.RecapDecompose(mol).GetLeaves().keys()))
else:
frags = BRICS.BRICSDecompose(mol)
frags = np.array(sorted({re.sub(r'\[\d+\*\]', '*', f) for f in frags}))
if len(frags) == 1: continue
du, hy = Chem.MolFromSmiles('*'), Chem.MolFromSmiles('[H]')
subs = np.array([Chem.MolFromSmiles(f) for f in frags])
subs = np.array([Chem.RemoveHs(Chem.ReplaceSubstructs(f, du, hy, replaceAll=True)[0]) for f in subs])
subs = np.array([m for m in subs if m.GetNumAtoms() > 1])
match = np.array([[m.HasSubstructMatch(f) for f in subs] for m in subs])
frags = subs[match.sum(axis=0) == 1]
frags = sorted(frags, key=lambda x:-x.GetNumAtoms())[:voc.n_frags]
frags = [Chem.MolToSmiles(Chem.RemoveHs(f)) for f in frags]
max_comb = len(frags) if is_mf else 1
for ix in range(1, max_comb+1):
combs = combinations(frags, ix)
for comb in combs:
input = '.'.join(comb)
if len(input) > len(smile): continue
if mol.HasSubstructMatch(Chem.MolFromSmarts(input)):
pairs.append([input, smile])
df = pd.DataFrame(pairs, columns=['Frags', 'Smiles'])
df.to_csv(out, sep='\t', index=False)
def pair_graph_encode(fname, voc, out):
df = pd.read_table(fname)
col = ['C%d' % d for d in range(voc.max_len*5)]
codes = []
for i, row in tqdm(df.iterrows(), total=len(df)):
frag, smile = row.Frags, row.Smiles
# smile = voc_smi.decode(row.Output.split(' '))
# frag = voc_smi.decode(row.Input.split(' '))
mol = Chem.MolFromSmiles(smile)
total = mol.GetNumBonds()
if total >= 75 or smile == frag:
continue
try:
# s = utils.clean_mol(smile)
# f = utils.clean_mol(frag, is_deep=False)
output = voc.encode([smile], [frag])
f, s = voc.decode(output)
assert smile == s[0]
# assert f == frag[0]
code = output[0].reshape(-1).tolist()
codes.append(code)
except:
print(i, frag, smile)
codes = pd.DataFrame(codes, columns=col)
codes.to_csv(out, sep='\t', index=False)
def pair_smiles_encode(fname, voc, out):
df = pd.read_table(fname)
col = ['Input', 'Output']
codes = []
for i, row in tqdm(df.iterrows(), total=len(df)):
frag, smile = row.Frags, row.Smiles
mol = voc.split(smile)
if len(mol) > 100: continue
sub = voc.split(frag)
codes.append([' '.join(sub), ' '.join(mol)])
codes = pd.DataFrame(codes, columns=col)
codes.to_csv(out, sep='\t', index=False)
def pos_neg_split():
pair = ['Target ChEMBL ID', 'Smiles', 'pChEMBL Value', 'Comment',
'Standard Type', 'Standard Relation']
obj = pd.read_table('data/LIGAND.tsv').dropna(subset=pair[1:2])
df = obj[obj[pair[0]] == 'CHEMBL251']
df = df[pair].set_index(pair[1])
numery = df[pair[2]].groupby(pair[1]).mean().dropna()
comments = df[(df.Comment.str.contains('Not Active') == True)]
inhibits = df[(df['Standard Type'] == 'Inhibition') & df['Standard Relation'].isin(['<', '<='])]
relations = df[df['Standard Type'].isin(['EC50', 'IC50', 'Kd', 'Ki']) & df['Standard Relation'].isin(['>', '>='])]
binary = pd.concat([comments, inhibits, relations], axis=0)
binary = binary[~binary.index.isin(numery.index)]
binary[pair[2]] = 3.99
binary = binary[pair[2]].groupby(binary.index).first()
df = numery.append(binary)
pos = {utils.clean_mol(s) for s in df[df >=6.5].index}
neg = {utils.clean_mol(s) for s in df[df < 6.5].index}.difference(pos)
oth = obj[~obj.Smiles.isin(df.index)].Smiles
oth = {utils.clean_mol(s) for s in oth}.difference(pos).difference(neg)
for data in ['pos', 'neg', 'oth']:
file = open('data/ligand_%s.tsv' % data, 'w')
file.write('Smiles\n')
file.write('\n'.join(eval(data)))
file.close()
def train_test_split(fname, out):
df = pd.read_table(fname)
frags = set(df.Frags)
test_in = df.Frags.drop_duplicates().sample(len(frags) // 10)
test = df[df.Frags.isin(test_in)]
train = df[~df.Frags.isin(test_in)]
test.to_csv(out + '_test.txt', sep='\t', index=False)
train.to_csv(out + '_train.txt', sep='\t', index=False)
if __name__ == '__main__':
opts, args = getopt.getopt(sys.argv[1:], "d:m:f:")
OPT = dict(opts)
method = OPT.get('-m', 'brics')
dataset = OPT.get('-d', 'chembl')
is_mf = bool(OPT.get('-f', 1))
BATCH_SIZE = 256
corpus('data/LIGAND_RAW.tsv', 'data/ligand', suffix='tsv')
corpus('data/chembl_27.sdf.gz', 'data/chembl')
voc = utils.VocGraph('data/voc_graph.txt', n_frags=4)
voc_smi = utils.VocSmiles('data/voc_smiles.txt')
out = 'data/%s_%s_%s' % (dataset, 'mf' if is_mf else 'sf', method)
pair_frags('data/chembl_corpus.txt', out + '.txt', method=method, is_mf=is_mf)
pair_frags('data/ligand_corpus.txt', out + '.txt', method=method, is_mf=is_mf)
train_test_split('data/chembl_mf_brics.txt', 'data/chembl_mf_brics')
train_test_split('data/ligand_mf_brics.txt', 'data/ligand_mf_brics')
for ds in ['train']:
pair_graph_encode(out + '_%s.txt' % ds, voc, out + '_%s_code.txt' % ds)
pair_smiles_encode(out + '_%s.txt' % ds, voc_smi, out + '_%s_smi.txt' % ds)
pos_neg_split()