Skip to content

Latest commit

 

History

History
78 lines (73 loc) · 3.56 KB

README.md

File metadata and controls

78 lines (73 loc) · 3.56 KB

Prepare TartanAir Dataset

The TartanAir is for robot navigation task and more. The data is collected in photo-realistic simulation environments in the presence of various light conditions, weather and moving objects. By collecting data in simulation, you are able to obtain multi-modal sensor data and precise ground truth labels, including the stereo RGB image, depth image, segmentation, optical flow, camera poses, and LiDAR point cloud. It set up a large number of environments with various styles and scenes, covering challenging viewpoints and diverse motion patterns, which are difficult to achieve by using physical data collection platforms.

Dataset can be downloaded at the following website: https://theairlab.org/tartanair-dataset/

The directory structure should be:

data
└───env01
|     └───Easy
|     |     └───P001
|     |     |      └───depth_left
|     |     |      |        └───000000_left_depth.npy
|     |     |      |        ...
|     |     |      └───depth_right
|     |     |      |        └───000000_right_depth.npy 000000_left_seg.npy
|     |     |      |        ...
|     |     |      └───flow
|     |     |      |     └───000000_000001_flow.npy
|     |     |      |     └───000000_000001_mask.npy
|     |     |      |        ...
|     |     |      └───image_left
|     |     |      |        └───000000_left.png
|     |     |      |        ...
|     |     |      └───image_right
|     |     |      |        └───000000_firht.png
|     |     |      |        ...
|     |     |      └───seg_left
|     |     |      |        └───000000_left_seg.npy
|     |     |      |        ...
|     |     |      └───seg_right
|     |     |      |        └───000000_right_seg.npy
|     |     |      |        ...
|     |     |      └───pose_left.txt
|     |     |      └───pose_right.txt
|     |     ...
|     └───Hard
|     |     └───P001
|     |     |      └───depth_left
|     |     |      |        └───000000_left_depth.npy
|     |     |      |        ...
|     |     |      └───depth_right
|     |     |      |        └───000000_right_depth.npy 000000_left_seg.npy
|     |     |      |        ...
|     |     |      └───flow
|     |     |      |     └───000000_000001_flow.npy
|     |     |      |     └───000000_000001_mask.npy
|     |     |      |        ...
|     |     |      └───image_left
|     |     |      |        └───000000_left.png
|     |     |      |        ...
|     |     |      └───image_right
|     |     |      |        └───000000_firht.png
|     |     |      |        ...
|     |     |      └───seg_left
|     |     |      |        └───000000_left_seg.npy
|     |     |      |        ...
|     |     |      └───seg_right
|     |     |      |        └───000000_right_seg.npy
|     |     |      |        ...
|     |     |      └───pose_left.txt
|     |     |      └───pose_right.txt
|     |     ...
...

Optionally you can write your own txt file and use all the parts of the dataset.

@article{tartanair2020iros,
  title =   {TartanAir: A Dataset to Push the Limits of Visual SLAM},
  author =  {Wang, Wenshan and Zhu, Delong and Wang, Xiangwei and Hu, Yaoyu and Qiu, Yuheng and Wang, Chen and Hu, Yafei and Kapoor, Ashish and Scherer, Sebastian},
  booktitle = {2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)},
  year =    {2020}
}