forked from caglarmert/Kartal
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
51 lines (41 loc) · 1.69 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import gym
import numpy as np
import argparse
import jsbsim
import gym_jsbsim
from stable_baselines.ddpg.policies import MlpPolicy
from stable_baselines.common.vec_env import DummyVecEnv
from stable_baselines.ddpg.noise import NormalActionNoise, OrnsteinUhlenbeckActionNoise, AdaptiveParamNoiseSpec
from stable_baselines import DDPG
from stable_baselines import logger
# Necessary for it to generate tensorboard log files during the run. Note that
# in the docker file I set OPENAI_LOGDIR and OPENAI_LOG_FORMAT environment variables
# to generate the kind of logs that I want.
logger.configure()
env = gym.make('JSBSim-HeadingControlTask-F16-Shaping.STANDARD-NoFG-v0')
env = DummyVecEnv([lambda: env])
# the noise objects for DDPG
n_actions = env.action_space.shape[-1]
param_noise = None
action_noise = OrnsteinUhlenbeckActionNoise(mean=np.zeros(n_actions), sigma=float(0.5) * np.ones(n_actions))
try:
model = DDPG.load("model/ppo_fg_heading", env=env, tensorboard_log="model/tensorboard/")
model.set_env( env )
print("Model exists")
except ValueError: # Model doesn't exist
print("Model doesn't exists, training new one")
model = DDPG(MlpPolicy, env, verbose=1, param_noise=param_noise, action_noise=action_noise, normalize_observations=True, tensorboard_log="model/tensorboard/")
model.learn(total_timesteps=3e6)
model.save("model/ppo_fg_heading")
print("model saved")
print("press any key to continue loading the trained model")
input()
env = gym.make('JSBSim-HeadingControlTask-F16-Shaping.STANDARD-FG-v0')
env.reset()
done = False
while True:
action = env.action_space.sample()
state, reward, done, _ = env.step(action)
if done:
env.reset()
env.render(mode='human')