forked from QihanGitHub/GMMNLSE-Solver-FINAL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGMMNLSE_propagate.m
361 lines (306 loc) · 12 KB
/
GMMNLSE_propagate.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
function foutput = GMMNLSE_propagate(fiber, initial_condition, sim)
% GMMNLSE_MPA_propagate Propagate an initial multi-mode pulse through an arbitrary distance of optical fiber
%
% fiber.betas - betas(i, :) = (i-1)th order dispersion coefficient for each mode, in ps^n/m
% fiber.SR - SR tensor, in m^-2
% fiber.L0 - length of fiber, in m
%
% initial_condition.dt - time step
% initial_condition.fields - initial field, in W^1/2, (Nxnum_modes). If the size is (Nxnum_modesxS), then it will take the last S
%
% sim.f0 - center frequency, in THz
% sim.fr - Raman proportion
% sim.sw - 1 includes self-steepening, 0 does not
% sim.deltaZ - small step size, in m
% sim.M - parallel extent for MPA, 1 is no parallelization
% sim.n_tot_max - maximum number of iterations for MPA
% sim.n_tot_min - minimum number of iterations for MPA
% sim.tol - tolerance for convergence for MPA
% sim.save_period - spatial period between saves, in m. 0 = only save input and output
% sim.singe_yes - 1 = single, 0 = double
% sim.gpu_yes - 1 = GPU, 0 = CPU
% sim.mpa_yes - 1 = MPA, 0 = split step
% sim.SK_factor - SK = SK_factor * fiber.SR
% sim.use_const_mem - 1 = use the GPUs constant memory if possible, 0 = only use global memory
% sim.check_nan - 1 = Check if the field has NaN components each roundtrip, 0 = do not
% sim.verbose - 1 = print extra information, 0 = stay silent
% sim.cuda_dir_path - path to the cuda directory into which ptx files will be compiled and stored
%
% Output:
% foutput.fields - (N, num_modes, num_save_points) matrix with the multimode field at each save point
% foutput.dt - time grid point spacing, to fully identify the field
% foutput.seconds - time spent in the main loop
% foutput.full_iterations_hist - histogram of the number of iterations, accumulated and saved between each save point
%% Check the validity of input parameters
if sim.save_period == 0
sim.save_period = fiber.L0;
end
% MPA performs M large steps in parallel
if sim.mpa_yes
large_step = sim.deltaZ*sim.M;
else
large_step = sim.deltaZ; % for SS the large step and small step are the same
end
num_large_steps_total = fiber.L0/large_step;
num_large_steps_persave = sim.save_period/large_step;
num_saves_total = fiber.L0/sim.save_period;
if rem(num_large_steps_total+5e-11,1) > 1e-10
error('Error in GMMNLSE_MPA_propagate: the large step size is %f m and the fiber length is %f m, which are not commensurate', large_step, fiber.L0)
end
if rem(num_large_steps_persave+5e-11,1) > 1e-10
error('Error in GMMNLSE_MPA_propagate: the large step size is %f m and the save period is %f m, which are not commensurate', large_step, sim.save_period)
end
if rem(num_saves_total+5e-11,1) > 1e-10
error('Error in GMMNLSE_MPA_propagate: the save period is %f m and the fiber length is %f m, which are not commensurate', sim.save_period, fiber.L0)
end
%% Work out the operlap tensor details
% These will be stored in the mode_info struct
% Get the numerical parameters from the initial condition
N = size(initial_condition.fields, 1);
num_modes = size(initial_condition.fields, 2);
% Find the permutations of SK and SR indices that need to be calculated
mode_info.SR = zeros(1, 1);
if sim.gpu_yes
mode_info.SR = gpuArray(mode_info.SR);
end
if sim.single_yes
mode_info.SR = single(mode_info.SR);
sim.SK_factor = single(sim.SK_factor); % This is needed to exactly match the cuda argument type
end
% The indices of nonzero elements in SR will be stored in nonzero_midx1234s
% If not using the GPU, we also need to calculate the indices that don't
% have all zero coefficients for any given two indices
mode_info.nonzero_midx1234s = zeros(4, 1, 'uint8'); % Once again this is needed to match the argument type. If you want more than 256 modes, you will have to change this to uint16
mode_info.nonzero_midx34s = zeros(2, 1, 'uint8');
if sim.gpu_yes
mode_info.nonzero_midx1234s = gpuArray(mode_info.nonzero_midx1234s);
mode_info.nonzero_midx34s = gpuArray(mode_info.nonzero_midx34s);
end
% Fill out which elements are actually nonzero and store them
cntA = 1;
cntB = 1;
for midx1 = 1:num_modes
for midx2 = 1:num_modes
for midx3 = 1:num_modes
for midx4 = 1:num_modes
if fiber.SR(midx1, midx2, midx3, midx4) == 0
continue
end
mode_info.nonzero_midx1234s(:, cntA) = [midx1, midx2, midx3, midx4];
mode_info.SR(cntA) = fiber.SR(midx1, midx2, midx3, midx4);
cntA = cntA + 1;
end
end
% Only avoid a set of two indices if all the other possible
% combinations have 0 values in SR
if fiber.SR(:, :, midx1, midx2) == 0
continue
end
mode_info.nonzero_midx34s(:, cntB) = [midx1, midx2];
cntB = cntB + 1;
end
end
%% Set up the GPU details
if sim.gpu_yes
gd = gpuDevice();
if sim.single_yes
num_size = 8; % 4 bytes * 2 for complex
single_str = 'single';
else
num_size = 16; % 8 bytes * 2 for complex
single_str = 'double';
end
specific_filename = ['calculate_sumterm_part_', single_str];
cudaFilename = [specific_filename, '.cu'];
ptxFilename = [specific_filename, '.ptx'];
if ispc
sep_char = '\';
else
sep_char = '/';
end
if exist([sim.cuda_dir_path sep_char ptxFilename], 'file') == 0
system(['nvcc -ptx "', sim.cuda_dir_path sep_char cudaFilename, '" --output-file "', sim.cuda_dir_path sep_char ptxFilename '"']);
end
% Setup the kernel from the cu and ptx files
kernel = parallel.gpu.CUDAKernel([sim.cuda_dir_path sep_char ptxFilename], [sim.cuda_dir_path sep_char cudaFilename]);
% Break up the computation into threads, and group them into blocks
num_threads_per_block = floor(gd.MaxShmemPerBlock/(num_modes*(2+num_modes)*num_size));
if num_threads_per_block < 32
num_threads_per_block = 32;
end
if num_threads_per_block > gd.MaxThreadBlockSize(1)
num_threads_per_block = gd.MaxThreadBlockSize(1);
end
% The number of blocks is set based on the total number of threads
if sim.mpa_yes
tot_num_threads = N*(sim.M+1);
else
tot_num_threads = N;
end
num_blocks = ceil(tot_num_threads/num_threads_per_block);
kernel.ThreadBlockSize = [num_threads_per_block,1,1];
kernel.GridSize = [num_blocks,1,1];
% Finally save the kernel
sim.kernel = kernel;
end
%% Calculate the nonlinearity constant
c = 2.99792458e-4; % speed of ligth m/ps
w0 = 2*pi*sim.f0; % angular frequency (THz)
n2 = 2.3*10^-20; % m^2 W^-1
nonlin_const = n2*w0/c; % W^-1 m
%% Pre-calculate the dispersion term
omegas = 2*pi*ifftshift(linspace(-N/2, N/2-1, N))'/(N*initial_condition.dt); % in 1/ps, in the order that the fft gives
if sim.single_yes
omegas = single(omegas);
end
% The dispersion term in the GMMNLSE, in frequency space
D_op = zeros(N, num_modes);
for mode_i = 1:num_modes
D_op(:, mode_i) = 1i*(fiber.betas(1, mode_i) - real(fiber.betas(1, 1))) +1i*(fiber.betas(2, mode_i) - real(fiber.betas(2, 1)))*omegas;
for jj = 2:size(fiber.betas, 1)-1
D_op(:, mode_i) = D_op(:, mode_i) + (1i)*fiber.betas(jj+1, mode_i)/factorial(jj)*omegas.^jj;
end
end
%% Pre-process as much as possible, depending on the type of simulation
if sim.gpu_yes
omegas = gpuArray(omegas);
end
if sim.mpa_yes
% Pre-compute exp(D_op*z) and exp(-D_op*z) for all z
if sim.gpu_yes
if sim.single_yes
D_pos = zeros(N, num_modes, sim.M+1, 'single', 'gpuArray');
D_neg = zeros(N, num_modes, sim.M+1, 'single', 'gpuArray');
else
D_pos = zeros(N, num_modes, sim.M+1, 'gpuArray');
D_neg = zeros(N, num_modes, sim.M+1, 'gpuArray');
end
else
if sim.single_yes
D_pos = zeros(N, num_modes, sim.M+1, 'single');
D_neg = zeros(N, num_modes, sim.M+1, 'single');
else
D_pos = zeros(N, num_modes, sim.M+1);
D_neg = zeros(N, num_modes, sim.M+1);
end
end
for zidx = 0:sim.M
if sim.single_yes
D_pos(:, :, zidx+1) = single(exp(D_op*sim.deltaZ*zidx));
D_neg(:, :, zidx+1) = single(exp(-D_op*sim.deltaZ*zidx));
else
D_pos(:, :, zidx+1) = exp(D_op*sim.deltaZ*zidx);
D_neg(:, :, zidx+1) = exp(-D_op*sim.deltaZ*zidx);
end
end
% Take into account the z-step
D = D_op*sim.deltaZ;
if sim.gpu_yes
D = gpuArray(D);
end
if sim.single_yes
D = single(D);
end
else
% If we're not using MPA then we don't bother with pre-calculating exp(D*z)
D = D_op*sim.deltaZ/2; % half here because of the symmetrized SS
if sim.gpu_yes
D = gpuArray(D);
end
if sim.single_yes
D = single(D);
end
end
%% Pre-compute the Raman response in frequency space
t1 = 12.2e-3; % raman parameter t1 [ps]
t2 = 32e-3; % raman parameter t2 [ps]
t_shifted = initial_condition.dt*(0:N-1)'; % time starting at 0
hr = ((t1^2+t2^2)/(t1*t2^2)).*exp(-t_shifted/t2).*sin(t_shifted/t1);
hrw = ifft(hr)*N; % The factor of N is needed because of how ifft is defined
if sim.gpu_yes
hrw = gpuArray(hrw);
end
if sim.single_yes
hrw = single(hrw);
end
%% Setup the exact save points
% We will always save the initial condition as well
z_points = round(num_large_steps_total)+1;
save_points = round(num_saves_total)+1;
save_freq = round(num_large_steps_total/num_saves_total); % Number of large steps per save
field_out = zeros(N, num_modes, save_points);
if sim.single_yes
field_out = single(field_out);
end
% Start by saving the initial condition
field_out(:, :, 1) = initial_condition.fields(:, :, end);
% Also setup the last_result in the frequency domain
% This gets passed to the step function, so if using the GPU it also needs
% to live on the GPU
last_result = ifft(initial_condition.fields(:, :, end));
if sim.gpu_yes
last_result = gpuArray(last_result);
end
if sim.single_yes
last_result = single(last_result);
end
% Finally, setup a small matrix to track the number of iterations per step
if sim.mpa_yes
iterations_hist = zeros(sim.n_tot_max, 1);
full_iterations_hist = zeros(sim.n_tot_max, save_points-1);
end
%% Run the step function over each step
tic
for ii = 2:z_points
% Print the step number if verbose
if sim.verbose
t_in_loop = tic;
disp(ii)
end
% Run the correct step function depending on the options chosen
if sim.mpa_yes
[num_it, last_result] = GMMNLSE_MPA_step(last_result, initial_condition.dt, sim, nonlin_const, mode_info, omegas, D_pos, D_neg, hrw);
iterations_hist(num_it) = iterations_hist(num_it)+1;
else
last_result = GMMNLSE_ss_step(last_result, initial_condition.dt, sim, nonlin_const, mode_info, omegas, D, hrw);
end
% Check for any NaN elements, if desired
if sim.check_nan
nanres = isnan(last_result);
if sum(nanres(:)) > 0
error('NaN field encountered, aborting');
end
end
% If it's time to save, get the result from the GPU if needed,
% transform to the time domain, and save it
if rem(ii-1, save_freq) == 0
field_out_ii = fft(last_result);
if sim.gpu_yes
field_out(:, :, round((ii-1)/save_freq)+1) = gather(field_out_ii);
else
field_out(:, :, round((ii-1)/save_freq)+1) = field_out_ii;
end
% If using MPA, also save and reset the iteration number histogram
if sim.mpa_yes
full_iterations_hist(:, round((ii-1)/save_freq)) = iterations_hist;
iterations_hist = 0*iterations_hist;
end
end
% Also print the time per step if verbose
if sim.verbose
toc(t_in_loop)
end
end
% Just to get an accurate timing, wait before recording the time
if sim.gpu_yes
wait(gd);
end
fulltime = toc();
%% Save the results in a struct
foutput.fields = field_out;
foutput.dt = initial_condition.dt;
foutput.seconds = fulltime;
if sim.mpa_yes
foutput.full_iterations_hist = full_iterations_hist;
end
end