From af8497fd7a761b8511f016d7ceb6e4384ed999b7 Mon Sep 17 00:00:00 2001 From: HoseongLee Date: Wed, 17 Jan 2024 06:12:04 +0000 Subject: [PATCH] [spec] Fix argument order in shape.replace_lane instruction of execution --- document/core/exec/instructions.rst | 16 ++++++++-------- 1 file changed, 8 insertions(+), 8 deletions(-) diff --git a/document/core/exec/instructions.rst b/document/core/exec/instructions.rst index 706c104ecd..48312337fc 100644 --- a/document/core/exec/instructions.rst +++ b/document/core/exec/instructions.rst @@ -513,31 +513,31 @@ Most other vector instructions are defined in terms of numeric operators that ar 1. Assert: due to :ref:`validation `, :math:`x < \dim(\shape)`. -2. Let :math:`t_1` be the type :math:`\unpacked(\shape)`. +2. Let :math:`t_2` be the type :math:`\unpacked(\shape)`. 3. Assert: due to :ref:`validation `, a value of :ref:`value type ` :math:`t_1` is on the top of the stack. -4. Pop the value :math:`t_1.\CONST~c_1` from the stack. +4. Pop the value :math:`t_2.\CONST~c_2` from the stack. 5. Assert: due to :ref:`validation `, a value of :ref:`value type ` |V128| is on the top of the stack. -6. Pop the value :math:`\V128.\VCONST~c_2` from the stack. +6. Pop the value :math:`\V128.\VCONST~c_1` from the stack. -7. Let :math:`i^\ast` be the result of computing :math:`\lanes_{\shape}(c_2)`. +7. Let :math:`i^\ast` be the result of computing :math:`\lanes_{\shape}(c_1)`. -8. Let :math:`c` be the result of computing :math:`\lanes^{-1}_{\shape}(i^\ast \with [x] = c_1)`. +8. Let :math:`c` be the result of computing :math:`\lanes^{-1}_{\shape}(i^\ast \with [x] = c_2)`. 9. Push :math:`\V128.\VCONST~c` on the stack. .. math:: \begin{array}{l} \begin{array}{lcl@{\qquad}l} - (t_1\K{.}\CONST~c_1)~(\V128\K{.}\VCONST~c_2)~(\shape\K{.}\REPLACELANE~x) &\stepto& (\V128\K{.}\VCONST~c) + (\V128\K{.}\VCONST~c_1)~(t_2\K{.}\CONST~c_2)~(\shape\K{.}\REPLACELANE~x) &\stepto& (\V128\K{.}\VCONST~c) \end{array} \\ \qquad \begin{array}[t]{@{}r@{~}l@{}} - (\iff & i^\ast = \lanes_{\shape}(c_2) \\ - \wedge & c = \lanes^{-1}_{\shape}(i^\ast \with [x] = c_1)) + (\iff & i^\ast = \lanes_{\shape}(c_1) \\ + \wedge & c = \lanes^{-1}_{\shape}(i^\ast \with [x] = c_2)) \end{array} \end{array}