-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy patheval.py
174 lines (142 loc) · 5.35 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
"""Eval."""
import os
import time
from absl import app
from absl import logging
import config
import network as builder
import tf_util
import waymo_loader
import tensorflow.compat.v2 as tf
tf.enable_v2_behavior()
FLAGS = config.define_flags()
_SUMMARY_TXT = 'validation_summary.txt'
_MIN_SUMMARY_STEPS = 10
def steps_to_run(current_step, steps_per_epoch, steps_per_loop):
"""Calculates steps to run on device."""
if steps_per_loop <= 0:
raise ValueError('steps_per_loop should be positive integer.')
if steps_per_loop == 1:
return steps_per_loop
remainder_in_epoch = current_step % steps_per_epoch
if remainder_in_epoch != 0:
return min(steps_per_epoch - remainder_in_epoch, steps_per_loop)
else:
return steps_per_loop
def _float_metric_value(metric):
"""Gets the value of a float-value keras metric."""
return metric.result().numpy().astype(float)
def main(_):
batch_size = FLAGS.test_batch_size
# Fake optimizer
optimizer = tf.keras.optimizers.Adam(FLAGS.lr, clipnorm=10.0)
# Make a model
model = builder.PillarModel(
class_id=FLAGS.class_id,
norm_type=FLAGS.norm_type,
act_type=FLAGS.act_type,
nms_iou_threshold=FLAGS.nms_iou_threshold,
nms_score_threshold=FLAGS.nms_score_threshold,
max_nms_boxes=FLAGS.max_nms_boxes,
use_oriented_per_class_nms=FLAGS.use_oriented_per_class_nms)
# Create summary writers
model_dir = FLAGS.model_dir
summary_dir = os.path.join(model_dir, 'summaries')
eval_summary_writer = tf.summary.create_file_writer(
os.path.join(summary_dir, 'eval'))
# Make a dataset
dataset_val = waymo_loader.waymo_open_dataset(
data_path=FLAGS.data_path,
batch_size=batch_size,
split='valid',
cycle_length=FLAGS.cycle_length,
shuffle_buffer_size=FLAGS.shuffle_buffer_size,
num_parallel_calls=FLAGS.num_parallel_calls,
percentile=FLAGS.percentile,
max_num_points=FLAGS.max_num_points,
max_num_bboxes=FLAGS.max_num_bboxes,
class_id=FLAGS.class_id,
difficulty=FLAGS.difficulty,
pillar_map_size=(FLAGS.pillar_map_size, FLAGS.pillar_map_size),
pillar_map_range=(FLAGS.pillar_map_range, FLAGS.pillar_map_range))
checkpoint_file = None
while True:
# Validation loop starts here.
checkpoint = tf.train.Checkpoint(ema_model=model, optimizer=optimizer)
if FLAGS.ckpt_path and FLAGS.eval_once:
latest_checkpoint_file = FLAGS.ckpt_path
else:
latest_checkpoint_file = tf.train.latest_checkpoint(model_dir)
if latest_checkpoint_file == checkpoint_file:
time.sleep(60)
continue
else:
logging.info(
'Checkpoint file %s found and restoring from '
'checkpoint', latest_checkpoint_file)
checkpoint.restore(latest_checkpoint_file)
logging.info('Loading from checkpoint file completed')
checkpoint_file = latest_checkpoint_file
current_step = optimizer.iterations.numpy()
total_loss = 0
total_cls_loss = 0
total_loc_loss = 0
total_example = 0
bboxes_pred = []
bboxes_pred_score = []
bboxes_pred_mask = []
bboxes = []
bboxes_mask = []
bboxes_speed = []
for inputs in dataset_val:
preds = model(inputs, training=False)
outputs = model.infer(inputs, preds)
bboxes_pred.append(outputs['loc_preds'])
bboxes_pred_score.append(outputs['cls_preds'])
bboxes_pred_mask.append(outputs['loc_mask'])
bboxes.append(inputs['bboxes'])
bboxes_mask.append(inputs['bboxes_mask'])
bboxes_speed.append(inputs['bboxes_speed'])
batch_size = tf_util.get_shape(inputs['points_xyz'])[0]
cls_loss, loc_loss = model.compute_loss(inputs, preds)
cls_loss = tf.reduce_sum(cls_loss)
loc_loss = tf.reduce_sum(loc_loss)
total_loss += cls_loss.numpy() + loc_loss.numpy()
total_cls_loss += cls_loss.numpy()
total_loc_loss += loc_loss.numpy()
total_example += batch_size
if total_example % 100 == 0:
logging.info('finished decoding %d examples', total_example)
decoded_outputs = {
'bboxes_pred': tf.concat(bboxes_pred, axis=0),
'bboxes_pred_score': tf.concat(bboxes_pred_score, axis=0),
'bboxes_pred_mask': tf.concat(bboxes_pred_mask, axis=0),
'bboxes': tf.concat(bboxes, axis=0),
'bboxes_mask': tf.concat(bboxes_mask, axis=0),
'bboxes_speed': tf.concat(bboxes_speed, axis=0),
}
metrics = tf_util.compute_ap(decoded_outputs, FLAGS.class_id)
val_status = (
'Val Step: %d / loc_loss = %s, cls_loss = %s.') % (
current_step, total_loc_loss / total_example,
total_cls_loss / total_example)
if eval_summary_writer:
with eval_summary_writer.as_default():
tf.summary.scalar(
'loc_loss', total_loc_loss / total_example, step=current_step)
tf.summary.scalar(
'cls_loss', total_cls_loss / total_example, step=current_step)
tf.summary.scalar(
'total_example', total_example, step=current_step)
for metric in metrics:
for key in metric:
tf.summary.scalar(key, metric[key], step=current_step)
metric_status = ('step: %s, %s: %s') % (
current_step, key, metric[key])
logging.info(metric_status)
eval_summary_writer.flush()
logging.info(val_status)
if FLAGS.eval_once:
break
if __name__ == '__main__':
app.run(main)