-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
executable file
·65 lines (54 loc) · 3.56 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import time
from data import create_dataset
from models import create_model
from options.train_options import TrainOptions
from util.visualizer import Visualizer
if __name__ == "__main__":
opt = TrainOptions().parse() # get training options
dataset = create_dataset(opt) # create a dataset given opt.dataset_mode and other options
dataset_size = len(dataset) # get the number of images in the dataset.
print("The number of training images = %d" % dataset_size)
model = create_model(opt) # create a model given opt.model and other options
model.setup(opt)
visualizer = Visualizer(opt) # create a visualizer that display/save images and plots
total_iters = 0 # the total number of training iterations
for epoch in range(
opt.epoch_count, opt.n_epochs + opt.n_epochs_decay + 1
): # outer loop for different epochs; we save the model by <epoch_count>, <epoch_count>+<save_latest_freq>
epoch_start_time = time.time() # timer for entire epoch
iter_data_time = time.time() # timer for data loading per iteration
epoch_iter = 0 # the number of training iterations in current epoch, reset to 0 every epoch
visualizer.reset() # reset the visualizer: make sure it saves the results to HTML at least once every epoch
model.update_learning_rate() # update learning rates in the beginning of every epoch.
for i, data in enumerate(dataset): # inner loop within one epoch
iter_start_time = time.time() # timer for computation per iteration
if total_iters % opt.print_freq == 0:
t_data = iter_start_time - iter_data_time
total_iters += opt.batch_size
epoch_iter += opt.batch_size
model.set_input(data) # unpack data from dataset and apply preprocessing
model.optimize_parameters(total_iters) # calculate loss functions, get gradients, update network weights
if total_iters % opt.display_freq == 0: # display images on visdom and save images to a HTML file
losses = model.get_current_losses()
save_result = total_iters % opt.update_html_freq == 0
model.compute_visuals()
visualizer.display_current_results(model.get_current_visuals(), epoch, save_result, losses)
if total_iters % opt.print_freq == 0: # print training losses and save logging information to the disk
losses = model.get_current_losses()
t_comp = (time.time() - iter_start_time) / opt.batch_size
visualizer.print_current_losses(epoch, epoch_iter, losses, t_comp, t_data)
if opt.display_id > 0:
visualizer.plot_current_losses(epoch, float(epoch_iter) / dataset_size, losses)
if total_iters % opt.save_latest_freq == 0: # cache our latest model every <save_latest_freq> iterations
print("saving the latest model (epoch %d, total_iters %d)" % (epoch, total_iters))
save_suffix = "iter_%d" % total_iters if opt.save_by_iter else "latest"
model.save_networks(save_suffix)
iter_data_time = time.time()
if epoch % opt.save_epoch_freq == 0: # cache our model every <save_epoch_freq> epochs
print("saving the model at the end of epoch %d, iters %d" % (epoch, total_iters))
model.save_networks("latest")
model.save_networks(epoch)
print(
"End of epoch %d / %d \t Time Taken: %d sec"
% (epoch, opt.n_epochs + opt.n_epochs_decay, time.time() - epoch_start_time)
)