forked from open-mmlab/mmdetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhtc_r50_fpn_1x_coco.py
33 lines (32 loc) · 1.17 KB
/
htc_r50_fpn_1x_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
_base_ = './htc-without-semantic_r50_fpn_1x_coco.py'
model = dict(
data_preprocessor=dict(pad_seg=True),
roi_head=dict(
semantic_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0),
out_channels=256,
featmap_strides=[8]),
semantic_head=dict(
type='FusedSemanticHead',
num_ins=5,
fusion_level=1,
seg_scale_factor=1 / 8,
num_convs=4,
in_channels=256,
conv_out_channels=256,
num_classes=183,
loss_seg=dict(
type='CrossEntropyLoss', ignore_index=255, loss_weight=0.2))))
train_pipeline = [
dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}),
dict(
type='LoadAnnotations', with_bbox=True, with_mask=True, with_seg=True),
dict(type='Resize', scale=(1333, 800), keep_ratio=True),
dict(type='RandomFlip', prob=0.5),
dict(type='PackDetInputs')
]
train_dataloader = dict(
dataset=dict(
data_prefix=dict(img='train2017/', seg='stuffthingmaps/train2017/'),
pipeline=train_pipeline))