-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_pytorch_onnx_caffe2_quantized.py
331 lines (270 loc) · 13.3 KB
/
test_pytorch_onnx_caffe2_quantized.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
# Owner(s): ["module: unknown"]
import numpy as np
import unittest
import torch.onnx
import torch.nn as nn
import torch.nn.quantized as nnq
import io
import onnx
import caffe2.python.onnx.backend as c2
class TestQuantizedOps(unittest.TestCase):
def generic_test(self, model, sample_inputs, input_names=None, decimal=3, relaxed_check=False):
torch.backends.quantized.engine = "qnnpack"
pt_inputs = tuple(torch.from_numpy(x) for x in sample_inputs)
model.qconfig = torch.ao.quantization.get_default_qconfig("qnnpack")
q_model = torch.ao.quantization.prepare(model, inplace=False)
q_model = torch.ao.quantization.convert(q_model, inplace=False)
traced_model = torch.jit.trace(q_model, pt_inputs)
buf = io.BytesIO()
torch.jit.save(traced_model, buf)
buf.seek(0)
q_model = torch.jit.load(buf)
q_model.eval()
output = q_model(*pt_inputs)
f = io.BytesIO()
torch.onnx.export(q_model, pt_inputs, f, input_names=input_names,
operator_export_type=torch.onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK)
f.seek(0)
onnx_model = onnx.load(f)
caffe_res = c2.run_model(onnx_model, dict(zip(input_names, sample_inputs)))[0]
# Due to change in requantization logic for certain ops such conv, linear
# in pytorch's integration of qnnpack, numerics may have a mismatc with C2.
# This mismatch should not be off my more than 1.
# This flag helps us override default behavior under certain circumstances.
if relaxed_check:
output_diff = np.absolute(np.squeeze(output.detach().numpy()) - caffe_res)
max_diff = np.amax(output_diff)
# This check had to be changed to account for changes in
# qnnpack's requant logic.
np.testing.assert_(max_diff <= 1, "Maximum absolute difference must be less than 1")
else:
np.testing.assert_almost_equal(output.detach().numpy(), caffe_res, decimal=decimal)
def generic_unary_test(self, op):
class QModule(torch.nn.Module):
def __init__(self, op):
super(QModule, self).__init__()
self.quant1 = torch.ao.quantization.QuantStub()
self.op = op
self.dequant = torch.ao.quantization.DeQuantStub()
def forward(self, x):
res = self.op(self.quant1(x))
return self.dequant(res)
x = np.random.random((1, 2)).astype("float32")
self.generic_test(QModule(op), (x,), input_names=["x"])
def test_quantized_add(self):
class QAddModule(torch.nn.Module):
def __init__(self):
super(QAddModule, self).__init__()
self.quant1 = torch.ao.quantization.QuantStub()
self.quant2 = torch.ao.quantization.QuantStub()
self.dequant = torch.ao.quantization.DeQuantStub()
def forward(self, x, y):
res = torch.ops.quantized.add(self.quant1(x), self.quant2(y), 1.0, 0)
return self.dequant(res)
x = np.random.random(2).astype("float32")
y = np.random.random(2).astype("float32")
self.generic_test(QAddModule(), (x, y), input_names=["x", "y"])
def test_quantized_relu(self):
self.generic_unary_test(torch.nn.ReLU())
def export_to_onnx(self, model, input, input_names):
traced = torch.jit.trace(model, input)
buf = io.BytesIO()
torch.jit.save(traced, buf)
buf.seek(0)
model = torch.jit.load(buf)
f = io.BytesIO()
torch.onnx.export(model, input, f, input_names=input_names,
operator_export_type=torch.onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK)
f.seek(0)
onnx_model = onnx.load(f)
return onnx_model
def test_qlinear_model(self):
class LinearModel(torch.nn.Module):
def __init__(self):
super(LinearModel, self).__init__()
self.qconfig = torch.ao.quantization.default_qconfig
self.fc1 = torch.ao.quantization.QuantWrapper(torch.nn.Linear(5, 10).to(dtype=torch.float))
def forward(self, x):
x = self.fc1(x)
return x
torch.backends.quantized.engine = "qnnpack"
qconfig = torch.ao.quantization.default_qconfig
model = LinearModel()
model.qconfig = qconfig
model = torch.ao.quantization.prepare(model)
model = torch.ao.quantization.convert(model)
x_numpy = np.random.rand(1, 2, 5).astype(np.float32)
x = torch.from_numpy(x_numpy).to(dtype=torch.float)
outputs = model(x)
input_names = ["x"]
onnx_model = self.export_to_onnx(model, x, input_names)
caffe_res = c2.run_model(onnx_model, dict(zip(input_names, x_numpy)))[0]
output_diff = np.absolute(np.squeeze(outputs.numpy()) - caffe_res)
max_diff = np.amax(output_diff)
# Permute pytorch output to NHWC
# This check had to be changed to account for changes in
# qnnpack's requant logic.
np.testing.assert_(max_diff <= 1, "Maximum absolute difference must be less than 1")
def test_qconv_model(self):
class ConvModel(torch.nn.Module):
def __init__(self):
super(ConvModel, self).__init__()
self.qconfig = torch.ao.quantization.default_qconfig
self.fc1 = torch.ao.quantization.QuantWrapper(torch.nn.Conv2d(3, 5, 2, bias=True).to(dtype=torch.float))
def forward(self, x):
x = self.fc1(x)
return x
torch.backends.quantized.engine = "qnnpack"
qconfig = torch.ao.quantization.default_qconfig
model = ConvModel()
model.qconfig = qconfig
model = torch.ao.quantization.prepare(model)
model = torch.ao.quantization.convert(model)
x_numpy = np.random.rand(1, 3, 6, 6).astype(np.float32)
x = torch.from_numpy(x_numpy).to(dtype=torch.float)
outputs = model(x)
input_names = ["x"]
onnx_model = self.export_to_onnx(model, x, input_names)
y = np.expand_dims(x_numpy, axis=0)
caffe_res = c2.run_model(onnx_model, dict(zip(input_names, y)))[0]
output_diff = np.absolute(np.squeeze(outputs.numpy()) - caffe_res)
max_diff = np.amax(output_diff)
# Permute pytorch output to NHWC
# This check had to be changed to account for changes in
# qnnpack's requant logic.
np.testing.assert_(max_diff <= 1, "Maximum absolute difference must be less than 1")
def test_upsample(self):
class QUpsampleModule(torch.nn.Module):
def __init__(self):
super(QUpsampleModule, self).__init__()
self.quant1 = torch.ao.quantization.QuantStub()
self.dequant = torch.ao.quantization.DeQuantStub()
def forward(self, x):
res = torch.nn.quantized.functional.interpolate(self.quant1(x), size=[6, 8], mode="nearest")
return self.dequant(res)
x = np.random.rand(1, 2, 3, 4).astype("float32")
self.generic_test(QUpsampleModule(), (x,), input_names=["x"], decimal=5)
def test_avg_pool2d(self):
class QAvgPool2dModule(torch.nn.Module):
def __init__(self):
super(QAvgPool2dModule, self).__init__()
self.quant1 = torch.ao.quantization.QuantStub()
self.dequant = torch.ao.quantization.DeQuantStub()
def forward(self, x):
res = torch.nn.functional.avg_pool2d(self.quant1(x), kernel_size=2, stride=1, padding=0)
return self.dequant(res)
x = np.random.rand(1, 2, 8, 8).astype("float32")
self.generic_test(QAvgPool2dModule(), (x,), input_names=["x"], relaxed_check=True)
def test_reshape(self):
class QReshapeModule(torch.nn.Module):
def __init__(self):
super(QReshapeModule, self).__init__()
self.quant1 = torch.ao.quantization.QuantStub()
self.dequant = torch.ao.quantization.DeQuantStub()
def forward(self, x):
res = self.quant1(x).reshape((1, 2, 1, 12))
return self.dequant(res)
x = np.random.rand(1, 2, 3, 4).astype("float32")
self.generic_test(QReshapeModule(), (x,), input_names=["x"], decimal=5)
def test_slice(self):
class QSliceModule(torch.nn.Module):
def __init__(self):
super(QSliceModule, self).__init__()
self.quant1 = torch.ao.quantization.QuantStub()
self.dequant = torch.ao.quantization.DeQuantStub()
def forward(self, x):
qx = self.quant1(x)
res = qx[:, 1:2]
return self.dequant(res)
x = np.random.rand(1, 2, 3, 4).astype("float32")
self.generic_test(QSliceModule(), (x,), input_names=["x"], decimal=5)
def test_cat(self):
class QConcatModule(torch.nn.Module):
def __init__(self):
super(QConcatModule, self).__init__()
self.quant1 = torch.ao.quantization.QuantStub()
self.dequant = torch.ao.quantization.DeQuantStub()
def forward(self, x, y):
res = torch.ops.quantized.cat([self.quant1(x), self.quant1(y)], dim=1, scale=1.0, zero_point=0)
return self.dequant(res)
x = np.random.rand(1, 2, 3, 4).astype("float32")
y = np.random.rand(1, 4, 3, 4).astype("float32")
self.generic_test(QConcatModule(), (x, y,), input_names=["x", "y"])
def test_max_pool2d(self):
class QMaxPool2dModule(torch.nn.Module):
def __init__(self):
super(QMaxPool2dModule, self).__init__()
self.quant1 = torch.ao.quantization.QuantStub()
self.dequant = torch.ao.quantization.DeQuantStub()
def forward(self, x):
res = torch.nn.functional.max_pool2d(self.quant1(x), kernel_size=2, stride=1, padding=0)
return self.dequant(res)
x = np.random.rand(1, 2, 8, 8).astype("float32")
self.generic_test(QMaxPool2dModule(), (x,), input_names=["x"], decimal=5)
def test_quantized_sigmoid(self):
self.generic_unary_test(torch.nn.Sigmoid())
def test_small_model(self):
class SimpleModel(torch.nn.Module):
def __init__(self):
super(SimpleModel, self).__init__()
self.quant = torch.ao.quantization.QuantStub()
self.dequant = torch.ao.quantization.DeQuantStub()
self.func_add = nnq.FloatFunctional()
self.conv1 = nn.Conv2d(3, 2, 5, bias=None).to(dtype=torch.float)
self.act1 = nn.Sigmoid()
self.conv2 = nn.Conv2d(2, 2, 1, bias=None).to(dtype=torch.float)
self.fc = nn.Linear(72, 10).to(dtype=torch.float)
self.fc.qconfig = None
def forward(self, x):
x = self.quant(x)
x = self.func_add.add(x, x)
x = self.conv1(x)
x = self.act1(x)
x = self.conv2(x)
x = self.dequant(x)
x = x.reshape(-1, 72).contiguous()
x = self.fc(x)
return x
x = np.random.rand(2, 3, 10, 10).astype("float32")
self.generic_test(SimpleModel(), (x,), input_names=["x"], relaxed_check=True)
def test_sequential(self):
class ConvBNReLUModule(nn.Sequential):
def __init__(self):
super().__init__(
nn.Conv2d(3, 3, 1, 1, bias=False),
nn.BatchNorm2d(3),
nn.ReLU(inplace=False)
)
class ModelWithClassifierHead(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 3, 1)
self.relu1 = nn.ReLU(inplace=False)
layers = []
for i in range(3):
layers.append(ConvBNReLUModule())
self.features = nn.Sequential(*layers)
head = [nn.Linear(300, 10), nn.ReLU(inplace=False)]
self.classifier = nn.Sequential(*head)
self.seq = nn.Sequential()
self.quant = torch.ao.quantization.QuantStub()
self.dequant = torch.ao.quantization.DeQuantStub()
def forward(self, x):
x = self.quant(x)
x = self.conv1(x)
x = self.relu1(x)
x = self.features(x)
x = torch.reshape(x, (-1, 3 * 10 * 10))
x = self.classifier(x)
x = self.seq(x)
x = self.dequant(x)
return x
model = ModelWithClassifierHead().eval()
torch.ao.quantization.fuse_modules(model, [["conv1", "relu1"] ,
["features.0.0", "features.0.1", "features.0.2"],
["features.1.0", "features.1.1", "features.1.2"],
["features.2.0", "features.2.1", "features.2.2"]], inplace=True)
x = np.random.rand(1, 3, 10, 10).astype("float32")
self.generic_test(model, (x,), input_names=["x"], relaxed_check=True)
if __name__ == "__main__":
unittest.main()