-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathexpert.py
792 lines (709 loc) · 36.4 KB
/
expert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
"""
#################################
# Python API: Trajectory Interface for Simulation
#################################
"""
#########################################################
# import libraries
import io
import re
import os
import lzma
import time
import glob
import torch
import queue
import pickle
import datetime
import torchvision
import cv2
import warnings
import wandb
import sys
import numpy as np
import pandas as pd
import numpy as np
import torch.nn as nn
import matplotlib.pyplot as plt
from tqdm import tqdm
from venv import create
from queue import Queue
from copy import deepcopy
from config import Config_BC
from config import Config_TRJ
from config import Config_Path
from rule_based import RuleBasedDriver
from utils.vis_utils import visualize_road, visualize, visualize_dy_objects
try:
from pynput.keyboard import Key, Listener
except:
print("pynput can't be imported")
from utils.collector_utils import SELECTION_EGO_OBS, EGO_OBS_MAP, HEADERS_TO_SAVE
from utils.collector_utils import create_folder, selection_size, select_from_array, convert_image_to_lane_ids, args_to_wandbnanme
from utils.trajectory_utils import data_ready_to_send
from utils.sim_env import SimPilotEnv
from collections import deque
from utils.data_utils import evaluate_data
from utils.trajectory_utils import map_key_to_yaw, human_input_to_trajectory
from mlagents_envs.exception import UnityCommunicatorStoppedException
warnings.filterwarnings("ignore")
queue_keys_steer = Queue()
queue_keys_acc = Queue()
#########################################################
# General Parameters
# Configurable parameters for rule based driver
TIME_PER_STEP = 0.02
EPSILON = 0.0001
LANE_CHANGE_TIME_LMT = 10 # Seconds
LANE_CHANGE_STEP_LMT = LANE_CHANGE_TIME_LMT / TIME_PER_STEP # Steps
FIRST_LANE_CHANGE_STEP_LMT = 1000
NUM_FUTURE_TRJ = Config_TRJ.get("NUMBER_POINTS")
NUM_CONTROL_ELEMENTS = Config_TRJ.get("NUM_CONTROL_ELEMENTS")
# NUM_EGO_ELEMENTS = Config_TRJ.get("NUM_EGO_ELEMENTS")
# TRJ_TIME_INTERVAL = Config_TRJ.get("TRJ_TIME_INTERVAL")
CONTROLLER_LANE_CHANGE_LMT = 3 # Speed limit for controller lane change command
CRASHED_DISPOSAL_STEPS = 250
EGO_COLLISION = [256.0, 512.0]
LANE_SWITCH = 2.0
CURRENT_TRAVEL_ASSIST = 0
LEFT_TRAVEL_ASSIST = 1
RIGHT_TRAVEL_ASSIST = 2
MAX_SPEED_TRAVEL_ASSIST = 44.5
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
run_date_time = time.strftime("%Y_%m_%d-%H_%M")
ta_map = {0: "None",
1: "Instantiated",
2: "Ready to change Lane",
3: "Started Movement",
4: "None",
5: "None",
6: "None"}
ta_map_new = {0: "None",
1: "Instantiated",
2: "Ready to change Lane",
3: "Started Movement",
4: "Interrupted",
5: "Success",
6: "Failed"}
# 4, 5, and 6 are for newer versions of simpilot (12.0.0 and after)
#########################################################
# Function definition
def expert_metrics(current_speed, speed_limit):
"""_summary_
Args:
current_speed (_type_): _description_
speed_limit (_type_): _description_
"""
wandb.log({
'ABS difference': abs(current_speed - speed_limit),
'Relative difference': ((current_speed - speed_limit) / speed_limit),
'Speed Difference': current_speed - speed_limit,
'current speed':current_speed,
'Speed Limit':speed_limit
})
def expert_drive(args):
"""_summary_
Args:
args (_type_): _description_
"""
if args.randomize_rule_based:
REACT_TIME = np.random.randint(2, 4) # Time of reaction between the ego and vehicle in front in (s)
SPEED_DIFF = np.random.randint(2, 5) # Speed difference that you can ignore (m/s)
SAFE_DIST_FRONT = np.random.randint(6, 10) # Safe distance with the vehicle in front and behind ego (m)
SAFE_DIST_REAR = np.random.randint(4, 6)
wandb_project_name = args_to_wandbnanme(args, run_date_time)
if args.track:
wandb.init(
project=args.algo,
entity=args.wandb_entity,
sync_tensorboard=False,
config=vars(args),
name=wandb_project_name,
save_code=True,
)
if args.evaluate:
wandb.define_metric("epoch_step")
wandb.define_metric("epoch/*", step_metric="epoch_step")
visualize_flag = args.visu
env_simpilot = SimPilotEnv(
args=args,
exec_name=args.exec_path,
no_graphic=args.no_graphic
)
env = env_simpilot.load_env_unity()
env_sumo = env_simpilot.load_env_sumo()
env_visualize = env_simpilot.load_env_visualization()
env_string = env_simpilot.load_env_string_channel()
if args.print_flag:
print(f"ego_obs_map={EGO_OBS_MAP}")
print(f"check total: {selection_size(EGO_OBS_MAP, SELECTION_EGO_OBS)}")
current_file_dir = os.path.dirname(os.path.abspath(__file__))
initials = args.initials
collection_time = int(time.time())
milestone = args.milestone
collection_task = args.task
recording_data_path = args.rawdata_path
if args.record_data:
recording_data_path = args.rawdata_path
if not os.path.exists(os.path.join(recording_data_path, "datafiles")):
os.makedirs(os.path.join(recording_data_path, "datafiles"))
if args.RoadIDSensor:
roadidsensor_folder, _ = create_folder(os.path.join(recording_data_path, "images/RoadIDSensor"))
if args.LaneIDSensor:
laneidsensor_folder, i_LaneIDSensor = create_folder(os.path.join(recording_data_path, "images/LaneIDSensor"))
if args.DrivableSensor:
drivablesensor_folder, _ = create_folder(os.path.join(recording_data_path, "images/DrivableSensor"))
# Dict to get observations by name
obs_idx_map = dict()
for key in env.behavior_specs:
print(f"Behavior: {key}")
spec = env.behavior_specs[key]
print(f"\tAction Spec: discrete_size={spec.action_spec.discrete_size}; continuous_size={spec.action_spec.continuous_size}")
print("\tObservation Specs:")
for i, _ in enumerate(spec.observation_specs):
obs_spec = spec.observation_specs[i]
name = ("EgoObservation" if "VectorSensor_size" in obs_spec.name else obs_spec.name)
obs_idx_map[name] = i
print(f"\t\tName={obs_spec.name} | Shape={obs_spec.shape} | Type={obs_spec.observation_type.name}")
if not args.no_graphic:
listener = Listener(on_press=detect)
listener.start()
behavior_name = list(env.behavior_specs)[0]
keyboardinterrupt = False
max_driven_distance = 0
ego_yaw = 0
fig_obj, fig_obj_grid, fig_dy_obj = None, None, None
total_num_steps = 0
driver = RuleBasedDriver()
for eps in np.arange(0, args.num_eps):
if fig_obj is not None:
plt.close(fig_obj)
if fig_obj_grid is not None:
plt.close(fig_obj_grid)
fig_obj, sc_trj, fig_obj_grid = None, None, None
driver.reset_dist_lane_change()
frame_id = 0
min_acc = np.inf
max_vel = -np.inf
step = 0
init_x, init_y = None, None
init_time = time.time()
completed_loop = False
num_lane_change = 0
total_distance = 0
total_num_lane_changes = 0
# *********** RANDOM ENVIRONMENT
if args.randomization_env:
laneid_wanted = args.randomization_laneid
spawnpath = args.spawnpoints_path
df_rand = pd.read_csv(spawnpath, delimiter=',')
if laneid_wanted == 0:
df_filtered = df_rand
else:
df_filtered = df_rand[df_rand['continuous_lane_id'] == laneid_wanted].sample(frac=1)
sampled_row = df_filtered.sample(n=1)
env.reset()
env_simpilot.agent_channel.set_init_transform(x=float(sampled_row.px.values),
y=float(sampled_row.py.values),
yaw=float(sampled_row.yaw.values))
env.reset()
decision_steps, terminal_steps = env.get_steps(behavior_name=behavior_name)
actions = spec.action_spec.empty_action(n_agents=decision_steps.agent_id.size)
agent_ids = list(decision_steps)
num_agents = len(agent_ids)
tracked_agent = -1
done = False
crashed = False
x_old, y_old = 0, 0
current_yaw_deg = 0
start_time = time.time()
data_frame_episode = []
reset = True
lane_change_sent = False
previous_lane = None
df = pd.DataFrame(None, columns=HEADERS_TO_SAVE)
lane_id_map_lst = []
road_id_map_lst = []
drivable_area_map_lst = []
target_speed = int(args.target_speed)
speed_action = target_speed
lane_change_command = 0
lane_change_action = 0
previous_lane_change_step = -1000
previous_lane_change_command = 0
# Reading report from Simpilot through SideChannel
# simpilot_report = env_string.parameters["EpisodeReport"]
if args.visu:
fig_scatter = plt.figure(figsize=(4, 6))
ax_speed = fig_scatter.add_subplot(111)
# ax_pos = fig_scatter.add_subplot(212)
ax_speed.grid(True)
# ax_pos.grid(True)
# plt.subplots_adjust(
# wspace=0.4,
# hspace=0.9)
plt.show(block=False)
rule_based_speeds = []
ego_speeds = []
ax_positions_x = deque(maxlen=250)
ax_positions_y = deque(maxlen=250)
lane_ids = []
while done is False:
try:
if tracked_agent == -1 and len(decision_steps) >= 1:
tracked_agent = decision_steps.agent_id[0]
# Retrieve ego observations
ego_obs = decision_steps.obs[obs_idx_map["EgoObservation"]][0]
timestamp = ego_obs[0]
ego_id = ego_obs[1]
position_x = ego_obs[2]
position_y = ego_obs[3]
velocity_x = ego_obs[4]
velocity_y = ego_obs[5]
acceleration_x = ego_obs[6]
acceleration_y = ego_obs[7]
orientation = ego_obs[8]
heading_x = ego_obs[9]
heading_y = ego_obs[10]
continuous_lane_id = ego_obs[11]
lane_relative_t = ego_obs[12]
angle_to_lane = ego_obs[13]
vehicle_switching_lane = ego_obs[14]
ego_collision_type = ego_obs[15]
controller_state = ego_obs[16]
nav_turn_command_n = ego_obs[17]
nav_point_position_n_x = ego_obs[18]
nav_point_position_n_y = ego_obs[19]
nav_point_distance_n = ego_obs[20]
nav_point_angle_n = ego_obs[21]
nav_turn_command_n1 = ego_obs[22]
nav_point_position_n1_x = ego_obs[23]
nav_point_position_n1_y = ego_obs[24]
nav_point_distance_n1 = ego_obs[25]
left_lane_available = ego_obs[26]
right_lane_available = ego_obs[27]
allowed_speed = ego_obs[28]
acc_target_speed = ego_obs[29]
travel_assist_lane_change_state = ego_obs[30]
total_distance += velocity_x * TIME_PER_STEP
if args.visu:
lane_ids.append(continuous_lane_id)
if step == 0:
init_x = position_x
init_y = position_y
if previous_lane is None:
previous_lane = continuous_lane_id
if args.print_flag and step % args.print_rate == 0:
print(f"Left lane availability is {left_lane_available} "
f"Right lane availability is {right_lane_available} ")
ego_obs_selected_dict = select_from_array(
ego_obs, EGO_OBS_MAP, SELECTION_EGO_OBS
)
# Retrieve static lane observations
static_lanes = decision_steps.obs[obs_idx_map["StaticLanes"]][0].astype(np.float16)
single_lane_0 = static_lanes[0]
lane_0_id = single_lane_0[0]
lane_0_speed_limit = single_lane_0[1]
lane_0_type = single_lane_0[2]
speed_limit = lane_0_speed_limit
# Retrieve BEV observations
if args.DrivableSensor:
drivable_area_map = decision_steps.obs[obs_idx_map["DrivableAreaSensor"]][0]
if args.print_flag:
print(f"drivable_area_map: {drivable_area_map.shape} {drivable_area_map[:, :, 0]}")
if args.LaneIDSensor:
lane_id_map = decision_steps.obs[obs_idx_map["LaneIdSensor"]][0]
lane_id_map = convert_image_to_lane_ids(lane_id_map)
if args.print_flag:
print(f"lane_id_map: {lane_id_map.shape} {lane_id_map[:, :, 0]}")
if args.RoadIDSensor:
road_id_map = decision_steps.obs[obs_idx_map["RoadIdSensor"]][0]
road_id_map = convert_image_to_lane_ids(road_id_map)
if args.print_flag:
print(f"road_id_map: {road_id_map.shape} {road_id_map[:, :, 0]}")
# Retrieve movable object observations
movable_obj = decision_steps.obs[obs_idx_map["MovableObjects"]][0]
num_available_dy_obj = np.count_nonzero(movable_obj[:, 0])
if step % args.print_rate == 0 and args.print_flag:
for _, dy_obj in enumerate(movable_obj[0:num_available_dy_obj]):
print(f"Object_{int(dy_obj[0])}: vx={dy_obj[3]:.2f} | "
f"pos_x={dy_obj[1]:.2f} | pos_y={dy_obj[2]:.2f} | "
f"lane={dy_obj[6]} | dist={np.sqrt(dy_obj[1]**2 + dy_obj[2]**2):.2f} |"
f"orientation={dy_obj[5]:.2f} | length={dy_obj[7]:.2f} | width={dy_obj[8]:.2f}")
obj_1 = movable_obj[0]
obj_1_id = obj_1[0]
obj_1_position_x = obj_1[1]
obj_1_position_y = obj_1[2]
obj_1_velocity_x = obj_1[3]
obj_1_velocity_y = obj_1[4]
obj_1_orientation = obj_1[5]
obj_1_lane_id = obj_1[6]
obj_1_box_length = obj_1[7]
obj_1_box_width = obj_1[8]
obj_1_type = obj_1[9]
obj_1_dist_to_center_of_lane = obj_1[10]
obj_1_signal = obj_1[11]
if step % args.print_rate == 0 and args.print_flag:
movable_obj = decision_steps.obs[obs_idx_map["MovableObjects"]][0]
print(f"Number of movable objects is {len(movable_obj)}\n")
print(f"Ego collision type is {ego_collision_type}")
for i in range(len(movable_obj)):
obj_1 = movable_obj[i]
obj_1_id = obj_1[0]
obj_1_position_x = obj_1[1]
obj_1_position_y = obj_1[2]
obj_1_velocity_x = obj_1[3]
obj_1_velocity_y = obj_1[4]
obj_1_orientation = obj_1[5]
obj_1_lane_id = obj_1[6]
obj_1_box_length = obj_1[7]
obj_1_box_width = obj_1[8]
obj_1_type = obj_1[9]
obj_1_dist_to_center_of_lane = obj_1[10]
if obj_1_lane_id != 0:
print(f"Movable object {i} with the id {obj_1_id}\n"
f"Location: ({obj_1_position_x}, {obj_1_position_y})\n"
f"Speed: ({obj_1_velocity_x}, {obj_1_velocity_y})\n"
f"Lane id is {obj_1_lane_id}\n"
f"Orientation is {obj_1_orientation}\n")
print("-" * 50)
print('_' * 100)
if step % args.print_rate == 0 and args.print_flag:
print("Ego position x {position_x}, position y {position_y}, and heading {orientation}")
print("Ego heading x {heading_x} and heading y {heading_y}")
print("Movable object 1 position x {movable_obj[0][1]}, position y {movable_obj[0][2]}, and orientation {movable_obj[0][5]}")
print("Movable object 2 position x {movable_obj[1][1]}, position y {movable_obj[1][2]}, and orientation {movable_obj[1][5]}")
# ***************************** Key pressed
if args.human:
try:
key_pressed_steer = queue_keys_steer.get(block=False)
# print('\nYou Entered (from queue) {0}'.format(key_pressed_steer))
except queue.Empty:
key_pressed_steer = None
try:
key_pressed_acc = queue_keys_acc.get(block=False)
# print('\nYou Entered (from queue) {0}'.format(key_pressed_steer))
except queue.Empty:
key_pressed_acc = None
current_yaw_deg, current_yaw_rad, target_speed = map_key_to_yaw(
key_pressed_steer, current_yaw_deg, key_pressed_acc, target_speed
)
x_trj, y_trj, vx_trj = human_input_to_trajectory(
velocity_x, target_speed, current_yaw_rad
)
control_points, control_ego = data_ready_to_send(
x_ref=x_trj, y_ref=y_trj, vx_ref=vx_trj
)
if args.sumo and args.no_graphic is False:
# Lane change command
try:
key_pressed_steer = queue_keys_steer.get(block=False)
except queue.Empty:
key_pressed_steer = None
# Overtake command
try:
key_pressed_acc = queue_keys_acc.get(block=False)
except queue.Empty:
key_pressed_acc = None
if args.semi_auto and args.controller == "SumoController":
if key_pressed_steer == Key.left:
env_simpilot.sumo_channel.changeLaneRelative('EgoCar_0', 1, 10)
if key_pressed_steer == Key.right:
env_simpilot.sumo_channel.changeLaneRelative('EgoCar_0', -1, 10)
if args.semi_auto and args.controller in ("TravelAssist", "TravelAssistUnsafe"):
lane_change_action = CURRENT_TRAVEL_ASSIST
if key_pressed_steer == Key.left:
lane_change_action = LEFT_TRAVEL_ASSIST
if key_pressed_steer == Key.right:
lane_change_action = RIGHT_TRAVEL_ASSIST
if key_pressed_acc == Key.up:
target_speed += 1
# print("Increasing target speed")
elif key_pressed_acc == Key.down:
target_speed -= 1
# print("Decreasing target speed")
x_trj, y_trj, vx_trj = human_input_to_trajectory(
ego_speed=0, target_speed=0, ego_yaw=0
)
control_points, control_ego = data_ready_to_send(
x_ref=x_trj, y_ref=y_trj, vx_ref=vx_trj
)
if visualize_flag and (step % args.vis_rate == 0):
# fig_obj_grid = visualize_road(fig_obj_grid, drivable_area_map,
# lane_id_map, road_id_map,)
fig_dy_obj = visualize_dy_objects(args, fig_dy_obj, lane_id_map, movable_obj)
if args.human:
action_trj_vector = control_points.T.flatten()
actions_trj = spec.action_spec.empty_action(n_agents=1)
actions_trj.add_continuous(np.expand_dims(action_trj_vector, axis=0))
env.set_actions(behavior_name=behavior_name, action=actions_trj)
if args.sumo:
target_speed = lane_0_speed_limit
if args.controller == "SumoController":
env_sumo.setSpeed('EgoCar_0', target_speed)
if args.controller in ("TravelAssist", "TravelAssistUnsafe"):
if args.semi_auto:
actions_travel_assist = spec.action_spec.empty_action(n_agents=1)
actions_travel_assist.add_discrete(np.expand_dims([lane_change_action], axis=0))
actions_travel_assist.add_continuous(np.expand_dims([float(target_speed / MAX_SPEED_TRAVEL_ASSIST)], axis=0))
env.set_actions(behavior_name=behavior_name, action=actions_travel_assist)
if args.rule_based:
objs = driver.get_near_objs(movable_obj, continuous_lane_id)
left_rear, left_front, cur_rear, cur_front, right_rear, right_front = objs
#Each vehicle (x, y, v, orientation)
if step % args.print_rate == 0:
print("Vehicle switching lane:", vehicle_switching_lane)
print("Lane change sent: ", lane_change_sent)
print("Left rear:", left_rear)
print("Left front:", left_front)
print("Cur rear:", cur_rear)
print("Cur front:", cur_front)
print("Right rear:", right_rear)
print("Right front:", right_front)
if ta_map[travel_assist_lane_change_state] == "None":
lane_change_command, speed_action = driver.change_lane(objs,
velocity_x,
acceleration_x,
target_speed,
continuous_lane_id,
left_lane_available,
right_lane_available)
if lane_change_command != 0:
if step - previous_lane_change_step >= LANE_CHANGE_STEP_LMT \
and velocity_x > CONTROLLER_LANE_CHANGE_LMT \
and step > FIRST_LANE_CHANGE_STEP_LMT:
num_lane_change += 1
else:
lane_change_command = 0
speed_action = driver.keep_current_lane(objs,
velocity_x,
acceleration_x,
target_speed)
else:
lane_change_command = 0
if ta_map[travel_assist_lane_change_state] in \
("Started Movement", "Ready to change lane") and \
vehicle_switching_lane != LANE_SWITCH:
speed_action = driver.get_speed_lane_change(objs,
velocity_x,
acceleration_x,
target_speed,
previous_lane_change_command)
else:
speed_action = driver.keep_current_lane(objs,
velocity_x,
acceleration_x,
target_speed)
if previous_lane != continuous_lane_id:
#Lane changed
if args.track:
wandb.log({"Steps took for a lane change": step - previous_lane_change_step})
speed_action /= MAX_SPEED_TRAVEL_ASSIST
# 44.45 = ego max speed
actions = spec.action_spec.empty_action(n_agents=decision_steps.agent_id.size)
actions.add_discrete(np.expand_dims([lane_change_command], axis=0))
if args.adaptive_cruise_control:
actions.add_continuous(np.expand_dims([speed_limit / MAX_SPEED_TRAVEL_ASSIST], axis=0))
else:
actions.add_continuous(np.expand_dims([speed_action], axis=0))
env.set_actions(behavior_name=behavior_name, action=actions)
previous_lane = continuous_lane_id
if lane_change_command != 0:
previous_lane_change_step = step
previous_lane_change_command = lane_change_command
if args.visu:
rule_based_speeds.append(speed_action * MAX_SPEED_TRAVEL_ASSIST)
ego_speeds.append(velocity_x)
ax_positions_x.append(position_x)
ax_positions_y.append(position_y)
# ************************************ Data Collection
if args.record_data:
image_suffix = f"{initials}_{collection_time}_{milestone}_{collection_task}_{eps}_{step}.png"
image_name = "laneidsensor_" + image_suffix
df.loc[len(df.index)] = [
initials,
collection_time,
milestone,
collection_task,
eps,
step,
time.time() - start_time,
velocity_x,
position_x,
position_y,
timestamp,
heading_x,
heading_y,
acceleration_x,
acceleration_y,
orientation,
continuous_lane_id,
lane_relative_t,
angle_to_lane,
controller_state,
vehicle_switching_lane,
x_trj,
y_trj,
vx_trj,
control_points.flatten(),
static_lanes.flatten(),
image_name,
speed_limit,
'Sumo' if args.sumo else 'Human',
ego_collision_type,
left_lane_available,
right_lane_available,
allowed_speed,
movable_obj,
speed_action,
lane_change_command,
travel_assist_lane_change_state
]
if args.LaneIDSensor:
lane_id_map_lst.append(lane_id_map)
if args.RoadIDSensor:
road_id_map_lst.append(road_id_map)
if args.DrivableSensor:
drivable_area_map_lst.append(drivable_area_map)
if step % args.print_rate == 0:
speed_action_print = speed_action * MAX_SPEED_TRAVEL_ASSIST if args.rule_based else speed_action
print(f" *********** Eps = {eps} "
f" *********** Step = {step} "
f" *********** Action Speed = {speed_action_print} "
f" *********** Action Lane = {lane_change_command}"
f" *********** Current Speed = {velocity_x:.2f}"
f" *********** Speed limit = {lane_0_speed_limit:.2f}"
f" *********** TA Status : {ta_map_new[travel_assist_lane_change_state]}"
f" *********** Lane id : {continuous_lane_id}"
)
if step > 2000 and \
np.sqrt((init_x - position_x) ** 2 + (init_y - position_y) ** 2) < 10 and \
not completed_loop:
done = True
completed_loop = True
if args.track:
wandb.log({"Steps to finish 1 loop": step,
"Time to finish 1 loop": time.time() - init_time,
"Number of Lane Changes in 1 loop": num_lane_change},
step=eps)
try:
env.step()
except UnityCommunicatorStoppedException:
exit(" ********************* Exit: UnityCommunicatorStoppedException"
" *********************")
time_stamp = datetime.datetime.now().strftime("%m/%d/%Y, %H:%M:%S.%f")[:-3]
decision_steps, terminal_steps = env.get_steps(behavior_name=behavior_name)
if args.track:
expert_metrics(velocity_x, target_speed)
if args.visu and step % 45 == 0:
ax_speed.plot(rule_based_speeds, color='orange', label='Action')
ax_speed.plot(ego_speeds, color='b', label='Ego speed')
ax_speed.plot(lane_ids, color = 'r', label='Lane ID')
# ax_pos.plot(ax_positions_x, ax_positions_y, color='r', label='Positions')
if step == 0:
plt.legend(bbox_to_anchor=(1.02, 0.1), borderaxespad=0)
plt.title("Speed comparison")
plt.pause(0.00000000001)
step += 1
total_num_steps += 1
if tracked_agent in terminal_steps:
done = True
if ego_collision_type in EGO_COLLISION:
done = True
crashed = True
if args.track:
wandb.log({"Distance before collision": total_distance}, step=eps)
except KeyboardInterrupt:
keyboardinterrupt = True
done = True
break
if args.visu:
plt.close()
# Saving data before interrupt
if args.record_data:
list_len = max(len(road_id_map_lst),
max(len(lane_id_map_lst),
len(drivable_area_map_lst)
)
)
# Don't throw away all the collected data in the case of an accident
if crashed:
list_len = max(0, list_len - CRASHED_DISPOSAL_STEPS)
df = df.drop(df.index[-CRASHED_DISPOSAL_STEPS:])
if list_len != 0:
if not args.evaluate:
for ind in range(list_len):
image_suffix = f"{initials}_{collection_time}_{milestone}_{collection_task}_{eps}_{ind}.png"
if args.RoadIDSensor:
road_id_map = road_id_map_lst[ind]
cv2.imwrite(os.path.join(roadidsensor_folder, "roadidsensor_" + image_suffix,),
road_id_map,)
if args.LaneIDSensor:
lane_id_map = lane_id_map_lst[ind]
cv2.imwrite(os.path.join(laneidsensor_folder, "laneidsensor_" + image_suffix,),
lane_id_map,)
if args.DrivableSensor:
drivable_area_map = drivable_area_map_lst[ind]
cv2.imwrite(os.path.join(drivablesensor_folder,
"driveablesensor_" + image_suffix,),
drivable_area_map,)
if args.RoadIDSensor or args.LaneIDSensor or args.DrivableSensor:
df.to_pickle(os.path.join(recording_data_path, "datafiles/{}_{}_{}_{}_{}.pkl".format(initials,
milestone,
collection_task,
collection_time,
i_LaneIDSensor)))
if args.track:
log_dict = {
"epoch_step": eps + 1,
"epoch/Time_to_finish_epoch": time.time() - init_time,
"epoch/Steps_to_finish_epoch": step,
"epoch/Distance_travelled_before_accident": total_distance,
"epoch/Number_of_Lane_Changes_in_one_epoch": total_num_lane_changes,
}
wandb.log(log_dict)
if keyboardinterrupt:
env.close()
exit(" ********************* Exit: keyboardinterrupt *********************")
# Creating new files and folders for the new episode
if args.record_data:
recording_data_path = args.rawdata_path
if not os.path.exists(os.path.join(recording_data_path, "datafiles")):
os.makedirs(os.path.join(recording_data_path, "datafiles"))
if eps != args.num_eps - 1 and list_len != 0:
if args.RoadIDSensor:
roadidsensor_folder, _ = create_folder(os.path.join(recording_data_path,
"images/RoadIDSensor"))
if args.LaneIDSensor:
laneidsensor_folder, i_LaneIDSensor = create_folder(os.path.join(recording_data_path, "images/LaneIDSensor"))
if args.DrivableSensor:
drivablesensor_folder, _ = create_folder(os.path.join(recording_data_path,
"images/DrivableSensor"))
if args.randomization_env and \
eps % args.new_rand_eps == args.new_rand_eps - 1 and \
eps != args.num_eps - 1:
# env_simpilot.configure_vtype(args)
env, env_sumo = env_simpilot.hard_reset(args)
if args.track:
wandb.log({"Average number of steps before accident": total_num_steps / args.num_eps}, step=1)
env.close()
if args.evaluate:
print('EVALUATION STARTS NOW')
args.model_name = ""
evaluate_data(args)
exit(" ********************* Exit: Done collecting data *********************")
def detect(key):
"""_summary_
Args:
key (_type_): _description_
Returns:
_type_: _description_
"""
# print('\nYou Entered {0}'.format(key))
if (key == Key.left) or (key == Key.right):
queue_keys_steer.put(key)
if (key == Key.up) or (key == Key.down):
queue_keys_acc.put(key)
if key == Key.delete:
# Stop listener
return False