-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathwindmapper.py
434 lines (349 loc) · 15.9 KB
/
windmapper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
#!/usr/bin/env python
# Wind Mapper
# Copyright (C) 2020 Vincent Vionnet & Christopher Marsh
# Script to build wind maps for CHM based on the Wind Ninja diagnostic wind model
# Take an existing DEM or download it from SRTM-30m the Web
# Split the DEM into several subdomain suitable for WindNinja
# Execute the WN simulations
# Combine the outputs into a single vrt file covering the initial DEM extent
import elevation
import pdb, os, shutil
import subprocess
from osgeo import gdal, ogr, osr
from pyproj import Proj, transform
import numpy as np
import sys
import importlib
from functools import partial
import itertools
from scipy import ndimage
from os import environ
from concurrent import futures
from tqdm import tqdm
gdal.UseExceptions() # Enable exception support
def main():
####### load user configurable paramters here #######
# Check user defined configuration file
if len(sys.argv) == 1:
print(
'ERROR: wind_mapper.py requires one argument [configuration file] (i.e. wind_mapper.py '
'param_existing_DEM.py)')
exit(-1)
# Get name of configuration file/module
configfile = sys.argv[-1]
# Load in configuration file as module
X = importlib.machinery.SourceFileLoader('config', configfile)
X = X.load_module()
# Resolution of WindNinja simulations (in m)
res_wind = X.res_wind
# path to Wind Ninja executable
# default path assumes we are running out of pip or we have a symlink @ ./bin/WindNinja_cli
wn_exe = os.path.join(
os.path.dirname(
os.path.abspath(__file__)), 'bin', 'WindNinja_cli')
if hasattr(X, 'wn_exe'):
wn_exe = X.wn_exe
if not os.path.exists(wn_exe):
print('ERROR: Invalid path for WindNinja_cli. Consider specifying a `wn_exe` config option or confirm it is correct.')
print(f'Path = {wn_exe}')
exit(-1)
environ["WINDNINJA_DATA"] = os.path.join(os.path.dirname(wn_exe), '..', 'share', 'windninja')
# Parameter for atmospheric stability in Wind Ninja mass conserving (default value)
alpha = 1
# Number of wind speed categories (every 360/ncat degrees)
ncat = 4
if hasattr(X, 'ncat'):
ncat = X.ncat
if ncat < 1:
print('ERROR ncat must be > 0 ')
exit(-1)
use_existing_dem = True
lat_min = -9999
lon_min = -9999
lat_max = -9999
lon_max = -9999
if hasattr(X, 'use_existing_dem'):
use_existing_dem = X.use_existing_dem
if use_existing_dem:
dem_filename = X.dem_filename
else:
lat_min = X.lat_min
lat_max = X.lat_max
lon_min = X.lon_min
lon_max = X.lon_max
if not use_existing_dem:
if lat_min == -9999 or lon_min == -9999 or lat_max == -9999 or lon_max == -9999:
print('Coordinates of the bounding box must be specified to download SRTM DEM.')
exit(-1)
# Method to compute average wind speed used to derive transfert function
wind_average = 'mean_tile'
targ_res = 1000
if hasattr(X, 'wind_average'):
wind_average = X.wind_average
if wind_average == 'grid':
targ_res = X.targ_res
list_options_average = ['mean_tile', 'grid']
if wind_average not in list_options_average:
print('wind average must be "mean_tile" or "grid"')
exit(-1)
if targ_res < 0:
print('Target resolution must be>0')
exit(-1)
# output to the specific directory, instead of the root dir of the calling python script
user_output_dir = os.getcwd() + '/' + configfile[:-3] + '/' # use the config filename as output path
if hasattr(X, 'user_output_dir'):
user_output_dir = X.user_output_dir
if user_output_dir[-1] is not os.path.sep:
user_output_dir += os.path.sep
# Delete previous dir (if exists)
if os.path.isdir(user_output_dir):
shutil.rmtree(user_output_dir, ignore_errors=True)
# make new output dir
os.makedirs(user_output_dir)
# Setup file containing WN configuration
nworkers = os.cpu_count() or 1
# on linux we can ensure that we respect cpu affinity
if 'sched_getaffinity' in dir(os):
nworkers = len(os.sched_getaffinity(0))
# ensure correct formatting on the output
fic_config = F"""num_threads = {nworkers}
initialization_method = domainAverageInitialization
units_mesh_resolution = m
input_speed = 10.0
input_speed_units = mps
input_wind_height = 40.0
units_input_wind_height = m
output_wind_height = 40.0
units_output_wind_height = m
output_speed_units = mps
vegetation = grass
diurnal_winds = false
write_goog_output = false
write_shapefile_output = false
write_ascii_output = true
write_farsite_atm = false """
if hasattr(X, 'fic_config_WN'):
fic_config_WN = X.fic_config_WN
if not os.path.exists(fic_config_WN):
print('ERROR: Invalid path for cli_massSolver.cfg given in `fic_config_WN` config options.')
exit(-1)
else:
fic_config_WN = os.path.join(user_output_dir, 'default_cli_massSolver.cfg')
with open(fic_config_WN, 'w') as fic_file:
fic_file.write(fic_config)
# we need to make sure we pickup the right paths to all the gdal scripts
gdal_prefix = ''
try:
gdal_prefix = subprocess.run(["gdal-config", "--prefix"], stdout=subprocess.PIPE).stdout.decode()
gdal_prefix = gdal_prefix.replace('\n', '')
gdal_prefix += '/bin/'
except:
raise BaseException(""" ERROR: Could not find gdal-config, please ensure it is installed and on $PATH """)
# Wind direction increment
delta_wind = 360. / ncat
# List of variable to transform from asc into tif
var_transform = ['ang', 'vel']
if wind_average == 'grid':
list_tif_2_vrt = ['U', 'V', 'spd_up_' + str(targ_res)]
elif wind_average == 'mean_tile':
list_tif_2_vrt = ['U', 'V', 'spd_up_tile']
# Optimal size for wind ninja
nres = 600
# Additional grid point to ensure correct tile overlap
nadd = 25
# Define DEM file to use for WN
fic_download = user_output_dir + 'ref-DEM.tif'
name_utm = 'ref-DEM-utm'
fic_utm = user_output_dir + '/' + name_utm + '.tif'
if use_existing_dem:
# if we are using a user-provided dem, ensure there are no NoData values that border the
# DEM which will cause issues
# mask data values
exec_str = """%sgdal_calc.py -A %s --outfile %s --NoDataValue 0 --calc="1*(A>0)" """ % (gdal_prefix,
dem_filename, user_output_dir + 'out.tif')
subprocess.check_call([exec_str], stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True)
# convert to shp file
exec_str = """%sgdal_polygonize.py -8 -b 1 -f "ESRI Shapefile" %s %s/pols """ % (gdal_prefix,
user_output_dir + 'out.tif', user_output_dir)
subprocess.check_call([exec_str], stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True)
# clip original with the shpfile
exec_str = """%sgdalwarp -of GTiff -cutline %s/pols/out.shp -crop_to_cutline -dstalpha %s %s """ % (gdal_prefix,
user_output_dir, dem_filename, fic_utm)
subprocess.check_call([exec_str], stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True)
shutil.rmtree("%s/pols" % user_output_dir)
os.remove("%s/out.tif" % user_output_dir)
else:
# Properties of the bounding box
delta_lat = lat_max - lat_min
delta_lon = lon_max - lon_min
fac = 0.1 # Expansion factor to make sure that the downloaded SRTM tile is large enough
lon_mid = (lon_min + lon_max) / 2.
lat_mid = (lat_min + lat_max) / 2.
# Download reference SRTM data
elevation.clip(bounds=(
lon_min - delta_lon * fac, lat_min - delta_lat * fac, lon_max + delta_lon * fac, lat_max + delta_lat * fac),
output=fic_download)
# Get corresponding UTM zone (center of the zone to extract)
nepsg_utm = int(32700 - round((45 + lat_mid) / 90, 0) * 100 + round((183 + lon_mid) / 6, 0))
srs_out = osr.SpatialReference()
srs_out.ImportFromEPSG(nepsg_utm)
# Get bounding box to extract in utm using pyproj
WGS84 = Proj(init='EPSG:4326')
inp = Proj(init='EPSG:' + str(nepsg_utm))
xmin, ymin = transform(WGS84, inp, lon_min, lat_min)
xmax, ymax = transform(WGS84, inp, lon_max, lat_max)
# Extract a rectangular region of interest in utm at 30 m
exec_str = '%sgdalwarp %s %s -overwrite -dstnodata -9999 -t_srs "%s" -te %.30f %.30f %.30f %.30f -tr %.30f ' \
'%.30f -r bilinear '
com_string = exec_str % (gdal_prefix, fic_download, fic_utm, srs_out.ExportToProj4(), xmin, ymin, xmax, ymax, 30, 30)
subprocess.check_call([com_string], stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True)
# Get informations on projected file
ds = gdal.Open(fic_utm)
band = ds.GetRasterBand(1)
gt = ds.GetGeoTransform()
xmin = gt[0]
ymax = gt[3]
pixel_width = gt[1]
pixel_height = -gt[5]
xmax = xmin + pixel_width * ds.RasterXSize
ymin = ymax - pixel_height * ds.RasterYSize
lenx = band.XSize * pixel_width
leny = band.YSize * pixel_height
len_wn = res_wind * nres
# Number of Wind Ninja tiles
nopt_x = int(lenx // len_wn + 1)
nopt_y = int(leny // len_wn + 1)
nx = band.XSize / nopt_x
ny = band.YSize / nopt_y
if nopt_x == 1 and nopt_y == 1:
# DEM is small enough for WN
name_tmp = 'tmp_0_0'
fic_tmp = user_output_dir + name_tmp + ".tif"
shutil.copy(fic_utm, fic_tmp)
else:
# Split the DEM into smaller DEM for Wind Ninja
for i in range(0, nopt_x):
for j in range(0, nopt_y):
xbeg = xmin + i * nx * pixel_width - nadd * pixel_width
ybeg = ymin + j * ny * pixel_height - nadd * pixel_height
delx = nx * pixel_width + 2 * nadd * pixel_width
dely = ny * pixel_height + 2 * nadd * pixel_height
if i == 0.:
xbeg = xmin
if i == 0. or i == (nopt_x - 1):
delx = nx * pixel_width + nadd * pixel_width
if j == 0.:
ybeg = ymin
if j == 0. or j == (nopt_y - 1):
dely = ny * pixel_height + nadd * pixel_height
name_tmp = 'tmp_' + str(i) + "_" + str(j)
fic_tmp = user_output_dir + name_tmp + ".tif"
clip_tif(fic_utm, fic_tmp, xbeg, xbeg + delx, ybeg, ybeg + dely, gdal_prefix)
# Build WindNinja winds maps
x_y_wdir = itertools.product(range(0, nopt_x),
range(0, nopt_y),
np.arange(0, 360., delta_wind))
x_y_wdir = [p for p in x_y_wdir]
for d in x_y_wdir:
i,j,k = d
dir_tmp = user_output_dir + 'tmp_dir' + "_" + str(i) + "_" + str(j)
if not os.path.isdir(dir_tmp):
os.makedirs(dir_tmp)
print(f'Running WindNinja on {len(x_y_wdir)} combinations of direction and sub-area. Please be patient...')
with futures.ProcessPoolExecutor(max_workers=nworkers) as executor:
res = list(tqdm(executor.map(partial(call_WN_1dir, gdal_prefix, user_output_dir, fic_config_WN,
list_tif_2_vrt, nopt_x, nopt_y, nx, ny,
pixel_height, pixel_width, res_wind, targ_res, var_transform, wind_average,
wn_exe,
xmin, ymin), x_y_wdir), total=len(x_y_wdir)))
print('Building VRTs...')
# Loop on wind direction to build reference vrt file to be used by mesher
nwind = np.arange(0, 360., delta_wind)
with tqdm(total=len(nwind)) as pbar:
for wdir in nwind:
for var in list_tif_2_vrt:
name_vrt = user_output_dir + name_utm + '_' + str(int(wdir)) + '_' + var + '.vrt'
cmd = "find " + user_output_dir[0:-1] + " -type f -name '*_" + str(int(wdir)) + "_10_" + str(
res_wind) + "m_" + var + "*.tif' -exec " + gdal_prefix+ "gdalbuildvrt " + name_vrt + " {} +"
subprocess.check_call([cmd], stdout=subprocess.PIPE,
shell=True)
pbar.update(1)
def call_WN_1dir(gdal_prefix, user_output_dir, fic_config_WN, list_tif_2_vrt, nopt_x, nopt_y, nx, ny,
pixel_height, pixel_width, res_wind, targ_res, var_transform, wind_average, wn_exe, xmin, ymin,
ijwdir):
i, j, wdir = ijwdir
# Out directory
dir_tmp = user_output_dir + 'tmp_dir' + "_" + str(i) + "_" + str(j)
name_tmp = 'tmp_' + str(i) + "_" + str(j)
fic_dem_in = user_output_dir + name_tmp + ".tif"
name_base = dir_tmp + '/' + name_tmp + '_' + str(int(wdir)) + '_10_' + str(res_wind) + 'm_'
subprocess.check_call([wn_exe + ' ' +
fic_config_WN + ' --elevation_file ' + fic_dem_in + ' --mesh_resolution ' + str(
res_wind) + ' --input_direction ' + str(int(wdir)) + ' --output_path ' + dir_tmp],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
shell=True)
for var in var_transform:
name_gen = name_base + var
subprocess.check_call([gdal_prefix + 'gdal_translate ' + name_gen + '.asc ' + name_gen + '.tif'],
stdout=subprocess.PIPE, stderr=subprocess.PIPE,
shell=True)
os.remove(name_gen + '.asc')
os.remove(name_gen + '.prj')
# Read geotif for angle and velocity to compute speed up
gtif = gdal.Open(name_base + 'ang.tif')
ang = gtif.GetRasterBand(1).ReadAsArray()
vel_tif = gdal.Open(name_base + 'vel.tif')
vel = vel_tif.GetRasterBand(1).ReadAsArray()
# Compute and save wind components
uu = -vel * np.sin(ang * np.pi / 180.)
fic_tif = name_base + 'U_large.tif'
save_tif(uu, vel_tif, fic_tif)
vv = -vel * np.cos(ang * np.pi / 180.)
fic_tif = name_base + 'V_large.tif'
save_tif(vv, vel_tif, fic_tif)
# Compute smooth wind speed
if wind_average == 'grid':
nsize = targ_res / res_wind
vv_large = ndimage.uniform_filter(vel, size=nsize, mode='nearest')
fic_tif = name_base + 'spd_up_' + str(targ_res) + '_large.tif'
elif wind_average == 'mean_tile':
vv_large = np.mean(vel)
fic_tif = name_base + 'spd_up_tile_large.tif'
# Compute local speed up and save
loc_speed_up = vel / vv_large
save_tif(loc_speed_up, vel_tif, fic_tif)
# Reduce the extent of the final tif
xbeg = xmin + i * nx * pixel_width
ybeg = ymin + j * ny * pixel_height
delx = nx * pixel_width
dely = ny * pixel_height
for var in list_tif_2_vrt:
fic_tif = name_base + var + '_large.tif'
fic_tif_fin = name_base + var + '.tif'
if nopt_x == 1 and nopt_y == 1:
shutil.copy(fic_tif, fic_tif_fin)
else:
clip_tif(fic_tif, fic_tif_fin, xbeg, xbeg + delx, ybeg, ybeg + dely, gdal_prefix)
os.remove(fic_tif)
def clip_tif(fic_in, fic_out, xmin, xmax, ymin, ymax, gdal_prefix):
com_string = gdal_prefix + "gdal_translate -of GTIFF -projwin " + str(xmin) + ", " + str(ymax) + ", " + str(xmax) + ", " + str(
ymin) + " " + fic_in + " " + fic_out
subprocess.check_call([com_string], stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True)
def save_tif(var, inDs, fic):
# Create the geotif
driver = inDs.GetDriver()
rows = inDs.RasterYSize
cols = inDs.RasterXSize
outDs = driver.Create(fic, cols, rows, 1, gdal.GDT_Float32)
# Create new band
outBand = outDs.GetRasterBand(1)
outBand.WriteArray(var, 0, 0)
# Flush data to disk
outBand.FlushCache()
# Georeference the image and set the projection
outDs.SetGeoTransform(inDs.GetGeoTransform())
outDs.SetProjection(inDs.GetProjection())
outDs = None
if __name__ == "__main__":
main()