-
Notifications
You must be signed in to change notification settings - Fork 11
/
nuclDetector.py
163 lines (133 loc) · 4.59 KB
/
nuclDetector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# Copyright (C) 2016 VU University Medical Center Amsterdam
# Author: Roy Straver ([email protected])
#
# This file is part of SANEFALCON
# SANEFALCON is distributed under the following license:
# Attribution-NonCommercial-ShareAlike, CC BY-NC-SA (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode)
# This license is governed by Dutch law and this license is subject to the exclusive jurisdiction of the courts of the Netherlands.
import sys
import operator
areaSize=73 #60
sideSize=20 #25
padding=areaSize+sideSize
outerLen=2*sideSize#len(left)+len(right)
innerLen=areaSize*2+1#len(window)
if len(sys.argv) > 3:
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
def plotRegion(start,end,area,bpScores,centers):
if len(centers) < 6 or len(area) < 2000:
return
plt.clf()
left=len(area)/2-1000
right=len(area)/2+1000
smooth=[]
for i in range(len(area)):
smooth.append(sum(area[max(0,i-10):i+10])/20.)
print smooth
print centers
for center in centers:
#plt.axvline(center[0]-start-74, color="gray")
#plt.axvline(center[0]-start+74, color="gray")
plt.axvspan(center[0]-73, center[0]+73, color='gray', alpha=0.3)
plt.axvline(center[0], color="black")
plt.plot(smooth)
plt.plot(bpScores,"red")
plt.title("Smoothed Read Start Count (chr21:"+str(start+left)+"-"+str(start+right)+")")
plt.xlabel("Relative BP position")
plt.ylabel("Count or Score")
plt.xlim([left,right])
plt.ylim([0,10])
fig = matplotlib.pyplot.gcf()
fig.set_size_inches(16,2)
plt.savefig(sys.argv[3]+"_"+str(start)+"-"+str(end)+'.plot.pdf', dpi=100)
def flush(area,endPoint):
# Sliding window settings, area is half the nucleosome size
bins=[0]*padding+area+[0]*padding
areaLen=len(area)
startPoint=endPoint-areaLen+1 # TODO check +1?
# Let's move out
bpScores=[]
extra=[]
peaks=[]
# Slide a window of 20\147/20 over the region and score positions
for i in range(padding,areaLen+padding):
window=bins[i-areaSize:i+areaSize+1]
leftVal=sum(bins[i-areaSize-sideSize:i-areaSize])
rightVal=sum(bins[i+areaSize+1:i+areaSize+sideSize+1])
innerVal=sum(window)
outerVal=leftVal+rightVal#min(leftVal,rightVal)
#if leftVal > 25 and rightVal > 25:
# Solve zero devision and score this pos twice as high
# innerVal=max(innerVal,0.5)
score = ((outerVal+1)/float(outerLen))/((innerVal+1)/float(innerLen))
bpScores.append(score)
extra.append([leftVal,innerVal,rightVal])
#else:
# bpScores.append(0)
# Pick best scoring positions in the region until no positive values exist
def findCenters(start,end):
if end-start < 1:
return []
maxIndex, bpMax = max(enumerate(bpScores[start:end]), key=operator.itemgetter(1))
if bpMax > 1:
# If the max is part of a flat line take it's center position instead
tmpIndex=maxIndex
while tmpIndex < ( end-start-1 ) and bpScores[ tmpIndex + 1 ] == bpMax:
tmpIndex += 1
maxIndex = ( maxIndex + tmpIndex ) / 2
left = start + maxIndex - innerLen
right = start + maxIndex + innerLen + 1
leftList = findCenters( start , left )
rightList = findCenters( right , end )
thisList = [ start + maxIndex , bpMax ]
return leftList + [ thisList ] + rightList
return []
newCenters=findCenters(0,areaLen)
if newCenters!=[] and newCenters[-1]!=[] and newCenters[-1][0] > len(extra):
print newCenters[-1],len(extra),len(bpScores),bpScores[-5:]
allNucl.extend([[x[0]+startPoint]+x[1:]+extra[x[0]] for x in newCenters])
if len(sys.argv) > 3:
plotRegion(startPoint,endPoint,area,bpScores,newCenters)
curArea=[0]
lastPos=0
maxDist=190 # A little over our sliding window size
inFile = open(sys.argv[1], 'rb')
allNucl=[]
for line in inFile:
splitLine=line.split()
position=int(splitLine[0])
distance = position - lastPos
#if position > 17500000:
# break
# So far away no nucleosome can be detected in between, finish this region
if distance > maxDist:
flush(curArea,lastPos)
curArea=[1]
# Add read to current region
else:
curArea+=[0 for x in range(distance)]
#curArea.extend([0 for x in range(distance+1000)])
curArea[-1]+=1
lastPos = position
flush(curArea,lastPos)
inFile.close()
# Dump results to a file
with open(sys.argv[2], "wb") as output_file:
for nucl in allNucl:
#output_file.write(str(nucl[0]) + "\t" + str(nucl[1]) + "\n")
output_file.write("\t".join([str(x) for x in nucl])+"\n")
'''
if distance > maxDist:
if lastPos >= int(sys.argv[4]):
print "End of this process reached:",sys.argv[4],lastPos
inFile.close()
quit()
elif lastPos >= int(sys.argv[3]):
flush(curArea,lastPos)
else:
print "Start of this process not yet reached:",sys.argv[3],lastPos
curArea=[1]
else:
'''