-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain_demo_env.py
241 lines (197 loc) · 8 KB
/
train_demo_env.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import collections
from copy import deepcopy
import numpy as np
import math
import torch
import gym
import argparse
import os
import time
import sac
import yaml
from policies import get_policy
from logger import Logger
from tqdm import tqdm
import pickle
from datetime import datetime
def eval_policy_actor(policy, eval_env, eval_episodes=1):
avg_reward = 0.
if hasattr(eval_env, '_max_episode_steps'):
max_step = eval_env._max_episode_steps
else:
max_step = 300
for _ in range(eval_episodes):
state, done = eval_env.reset(), False
episode_steps=0
while not done:
episode_steps+=1
action = policy.get_action(np.array(state),deterministic=True)
state, reward, done, _ = eval_env.step(action)
if(episode_steps>=max_step):
done=True
avg_reward += reward
print("---------------------------------------")
print(
"Actor| Evaluation over {} episodes: {}".format(
eval_episodes,
avg_reward))
print("---------------------------------------")
return avg_reward
def eval_policy(policy, eval_env, eval_episodes=1,logger=None):
if hasattr(eval_env, '_max_episode_steps'):
max_step = eval_env._max_episode_steps
else:
max_step = 1000
if torch.is_tensor(policy.mean):
old_mean = policy.mean.clone()
else:
old_mean = policy.mean.copy()
avg_reward = 0.
avg_cost = 0.
for _ in range(eval_episodes):
state, done = eval_env.reset(eval=True), False
i=0
policy.reset()
while not done:
i+=1
if(i>=max_step):
break
action = policy.get_action(np.array(state),deterministic=True)
next_state, reward, done, info = eval_env.step(action)
state = next_state
avg_reward += reward
if 'cost' in info:
avg_cost += info['cost']
policy.mean = old_mean
print("---------------------------------------")
print("Evaluation over {} episodes: {}".format(eval_episodes, avg_reward))
print("---------------------------------------")
return avg_reward, avg_cost
def run_loop(args):
config = construct_config()
datenow = datetime.now()
logger_kwargs={'output_dir':'./results/'+ args.exp_name, 'exp_name':datenow.strftime("%m-%d-%H-%M")}
logger = Logger(logger_kwargs["output_dir"]+'/'+logger_kwargs["exp_name"], use_tb=True)
print("---------------------------------------")
print("Policy: {}, Env: {}, Seed: {}".format(
'DeMoRL', args.exp_name, args.seed))
print("---------------------------------------")
env = gym.make(args.exp_name)
torch.manual_seed(args.seed)
np.random.seed(args.seed)
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
print("State space: {}, Action space: {}".format(state_dim, action_dim))
replay_buffer = sac.ReplayBuffer(state_dim, action_dim, int(1e6))
# Choose a controller
policy, sac_policy, dynamics = get_policy(args, env, replay_buffer, config)
sac_policy.ac_targ = deepcopy(sac_policy.ac)
ckpt = 0
noise_amount = config['mpc_config']['epsilon']
total_timesteps = 0
episode_timesteps = 0
episode_reward, episode_cost = 0, 0
evaluation_rewards, evaluation_costs = 0, 0
evaluation_episodes = 0
state, done, done_episode = env.reset(), False, False
if ckpt==0:
start_instant = 0
else:
start_instant = ckpt+1
for t in tqdm(range(start_instant, int(args.max_timesteps))):
total_timesteps += 1
episode_timesteps += 1
# Select action randomly or according to policy
if t < args.start_timesteps:
# action = env.action_space.sample()
action = policy.get_action(np.array(state))
action = np.clip(
action,
env.action_space.low,
env.action_space.high)
else:
action = policy.get_action(np.array(state))
action = action + np.random.normal(action.shape) * noise_amount
action = np.clip(
action,
env.action_space.low,
env.action_space.high)
# Take the safe action
next_state, reward, done, info = env.step(action)
episode_reward += reward
if 'cost' in info:
episode_cost += info['cost']
if hasattr(env, '_max_episode_steps'):
done_bool = float(
done) if episode_timesteps < env._max_episode_steps else 0
if episode_timesteps >= env._max_episode_steps or done:
done_episode=True
else:
done_bool = float(
done) if episode_timesteps < 1000 else 0
if episode_timesteps >= 1000 or done:
done_episode=True
# Store data in replay buffer
replay_buffer.store(state, action, reward,next_state, done_bool, cost=info.get('cost',0))
state = next_state
if (t+1) % args.dynamics_freq == 0:
dynamics_trainloss, dynamics_valloss = dynamics.train()
if t >= args.start_timesteps and t%sac_policy.update_every==0:
sac_policy.train()
if done_episode:
policy.reset()
evaluation_costs += episode_cost
evaluation_rewards += episode_reward
episode_reward, episode_cost = 0, 0
evaluation_rewards, evaluation_costs = 0,0
evaluation_episodes += 1
state, done = env.reset(), False
done_episode=False
episode_timesteps = 0
# Evaluate episode
if (t + 1) % args.eval_freq == 0 and t > args.start_timesteps:
actor_rew = eval_policy_actor(sac_policy, env)
logger.log('eval/step', t, t)
logger.log('eval/episode_reward', actor_rew, t)
logger.dump(t)
pickle.dump((replay_buffer.state, replay_buffer.action, replay_buffer.reward, replay_buffer.next_state, replay_buffer.cost, replay_buffer.done), open('{}/replay_buffer_{}.pkl'.format(logger_kwargs["output_dir"]+'/'+logger_kwargs["exp_name"], str(t)), 'wb'))
torch.save(sac_policy.ac.state_dict(), '{}/sac_policy_{}.pt'.format(logger_kwargs["output_dir"]+'/'+logger_kwargs["exp_name"], str(t)))
torch.save(dynamics.model.ensemble_model.state_dict(), '{}/dynamics_{}.pt'.format(logger_kwargs["output_dir"]+'/'+logger_kwargs["exp_name"], str(t)))
pickle.dump((dynamics.model.elite_model_idxes, dynamics.model.scaler), open('{}/scalar_trasform_{}.pkl'.format(logger_kwargs["output_dir"]+'/'+logger_kwargs["exp_name"], str(t)), 'wb'))
evaluation_rewards, evaluation_episodes, evaluation_costs = 0, 0, 0
def construct_config():
config = {}
# Environment
config['mpc_config'] = {}
mpc_config = {}
mpc_config['horizon'] = 3
mpc_config['gamma'] = 0.99
mpc_config['epsilon'] = 0.0
cem_config = {}
cem_config['popsize'] = 100
cem_config['particles'] = 4
cem_config['actor_mix'] = 5
cem_config['max_iters'] = 5
cem_config['num_elites'] = 10
cem_config['alpha'] = 0.1
cem_config['mixture_coefficient'] = 0.05
demo_config = {}
demo_config['popsize'] = 100
demo_config['particles'] = 4
demo_config['max_iters'] = 5
demo_config['alpha'] = 0.1
demo_config['mixture_coefficient'] = 0.05
mpc_config['CEM'] = cem_config
mpc_config['DeMo'] = demo_config
config['mpc_config'] = mpc_config
return config
if __name__=='__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--seed", default=0, type=int)
parser.add_argument("--start_timesteps", default=1e3, type=int)
parser.add_argument("--eval_freq", default=500, type=int)
parser.add_argument("--max_timesteps", default=1e5, type=int)
parser.add_argument("--dynamics_freq", default=250, type=int)
parser.add_argument("--exp_name", default="HalfCheetah-v2")
args = parser.parse_args()
run_loop(args)