-
Notifications
You must be signed in to change notification settings - Fork 0
/
unit05.tex
104 lines (96 loc) · 3.27 KB
/
unit05.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
\providecommand{\main}{..}
\documentclass[\main/notes.tex]{subfiles}
\begin{document}
\setcounter{chapter}{4}
\chapter{Trigonometry}
\section{Special Angles}
\begin{center}
\begin{tikzpicture}[scale=5,cap=round,>=latex]
% draw the coordinates
\draw[->] (-1.5cm,0cm) -- (1.5cm,0cm) node[right,fill=white] {$x$};
\draw[->] (0cm,-1.5cm) -- (0cm,1.5cm) node[above,fill=white] {$y$};
% draw the unit circle
\draw[thick] (0cm,0cm) circle(1cm);
\foreach \x in {0,30,...,360} {
% lines from center to point
\draw[gray] (0cm,0cm) -- (\x:1cm);
% dots at each point
\filldraw[black] (\x:1cm) circle(0.4pt);
% draw each angle in degrees
\draw (\x:0.6cm) node[fill=white] {$\x^\circ$};
}
% draw each angle in radians
\foreach \x/\xtext in {
30/\frac{\pi}{6},
45/\frac{\pi}{4},
60/\frac{\pi}{3},
90/\frac{\pi}{2},
120/\frac{2\pi}{3},
135/\frac{3\pi}{4},
150/\frac{5\pi}{6},
180/\pi,
210/\frac{7\pi}{6},
225/\frac{5\pi}{4},
240/\frac{4\pi}{3},
270/\frac{3\pi}{2},
300/\frac{5\pi}{3},
315/\frac{7\pi}{4},
330/\frac{11\pi}{6},
360/2\pi}
\draw (\x:0.85cm) node[fill=white] {$\xtext$};
\foreach \x/\xtext/\y in {
% the coordinates for the first quadrant
30/\sqrt{3}/1,
45/\sqrt{2}/\sqrt{2},
60/1/\sqrt{3},
% the coordinates for the second quadrant
150/-\sqrt{3}/1,
135/-\sqrt{2}/\sqrt{2},
120/-1/\sqrt{3},
% the coordinates for the third quadrant
210/-\sqrt{3}/-1,
225/-\sqrt{2}/-\sqrt{2},
240/-1/-\sqrt{3},
% the coordinates for the fourth quadrant
330/\sqrt{3}/-1,
315/\sqrt{2}/-\sqrt{2},
300/1/-\sqrt{3}}
\draw (\x:1.25cm) node[fill=white] {$\left(\xtext,\y\right)$};
% draw the horizontal and vertical coordinates
% the placement is better this way
\draw (-1.25cm,0cm) node[above=1pt] {$(-2,0)$}
(1.25cm,0cm) node[above=1pt] {$(2,0)$}
(0cm,-1.25cm) node[fill=white] {$(0,-2)$}
(0cm,1.25cm) node[fill=white] {$(0,2)$};
\end{tikzpicture}
\end{center}
\section{Identities}
\subsection{Defining Relations}
\begin{alignat*}{2}
\tan \theta &= \frac{\sin\theta}{\cos\theta} \qquad & \cot \theta &= \frac{1}{\tan\theta} = \frac{\cos\theta}{\sin\theta}\\
\sec\theta &= \frac{1}{\cos\theta} \qquad & \csc\theta &= \frac{1}{\sin\theta}
\end{alignat*}
\subsection{Pythagorean Identity}
\begin{align*}
\sin^{2}\theta + \cos^{2}\theta = 1
\end{align*}
\subsection{Negative Angles}
\begin{alignat*}{3}
\sin(-\theta) &= -\sin\theta \qquad & \cos(-\theta) &= \cos\theta \qquad & \tan(-\theta) = -\tan\theta
\end{alignat*}
\subsection{Sum and Difference}
\begin{alignat*}{2}
\sin(\alpha + \beta) &= \sin\alpha\cos\beta + \cos\alpha\sin\beta \qquad &
\sin(\alpha - \beta) &= \sin\alpha\cos\beta - \cos\alpha\sin\beta\\
\cos(\alpha + \beta) &= \cos\alpha\cos\beta - \sin\alpha\sin\beta
\end{alignat*}
\subsection{Double Angle Formulae}
\begin{align*}
\sin(2\theta) &= 2\sin\theta\cos\theta\\
\cos(2\theta) &= \cos^{2}\theta - \sin^{2}\theta\\
&= 2\cos^{2}\theta - 1\\
&= 1 - 2\sin^{2}\theta
\end{align*}
\ifSubfilesClassLoaded{%
\vbox{\rulechapterend}}{\vspace*{\parskip}\rulebookend}
\end{document}