-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathThevenin.nb
executable file
·3078 lines (2994 loc) · 133 KB
/
Thevenin.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 11.3' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 136116, 3070]
NotebookOptionsPosition[ 130278, 2970]
NotebookOutlinePosition[ 130612, 2985]
CellTagsIndexPosition[ 130569, 2982]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["Thevenin' s Theorem", "Title",
CellChangeTimes->{{3.765019460411243*^9,
3.765019468770104*^9}},ExpressionUUID->"99b6b6a9-bc4c-43b5-8646-\
41af863cd102"],
Cell["\<\
Charlie Bushman
Phys 235 Lab #3
04-23-19\
\>", "Text",
CellChangeTimes->{{3.765019473282703*^9,
3.765019488090899*^9}},ExpressionUUID->"b0b79031-9338-4f8f-8541-\
e3ee58a16b16"],
Cell[BoxData[
RowBox[{"Needs", "[", "\"\<ErrorBarPlots`\>\"", "]"}]], "Input",
CellChangeTimes->{{3.76557134051231*^9, 3.765571345924177*^9}},
CellLabel->
"In[2082]:=",ExpressionUUID->"7b181f6a-ca31-41b5-8d69-cf14b6979a3d"],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"\[Delta]Q", "[",
RowBox[{"f_", ",", "p_", ",", "\[Delta]_"}], "]"}], ":=",
RowBox[{"Sqrt", "[",
RowBox[{"Sum", "[",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"D", "[",
RowBox[{"f", ",",
RowBox[{"p", "[",
RowBox[{"[", "i", "]"}], "]"}]}], "]"}], " ",
RowBox[{"\[Delta]", "[",
RowBox[{"[", "i", "]"}], "]"}]}], ")"}], "2"], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",",
RowBox[{"Length", "[", "p", "]"}]}], "}"}]}], "]"}], "]"}]}],
";"}]], "Input",
CellChangeTimes->{{3.76563937620015*^9, 3.765639444311686*^9}, {
3.765639476770747*^9, 3.765639551244101*^9}, {3.76563962938581*^9,
3.765639644700222*^9}},
CellLabel->
"In[2083]:=",ExpressionUUID->"52f00de2-75d1-42db-88b0-f0203fc5e731"],
Cell[TextData[{
"This is a Mathematica notebook detailing the analysis of Lab 03 of Carleton \
College Phys 235. In this lab, we seek to experimentally verify Thevenin\
\[CloseCurlyQuote]s theorem with a couple circuits of varying complexities. \
The third section will be focused on using our (hopefully) verified theorem \
to find the effective resistance of a function generator.\nThroughout this \
lab we will be making use of a circuit that we will call \
\[OpenCurlyDoubleQuote]rest of the world\[CloseCurlyDoubleQuote] or the \
\[OpenCurlyDoubleQuote]observer\[CloseCurlyDoubleQuote]. It will measure the \
voltage across two terminals and can measure the current through the \
resistor, ",
Cell[BoxData[
FormBox[
SubscriptBox["R", "s"], TraditionalForm]],
FormatType->"TraditionalForm",ExpressionUUID->
"cf734f95-34b7-48d5-b321-abe1a05dd6a1"],
", because the voltmeter is assumed to have R\[Rule]\[Infinity]."
}], "Text",
CellChangeTimes->{{3.7655814894325542`*^9, 3.7655815760234413`*^9}, {
3.765581644015409*^9, 3.765581721352785*^9}, {3.765581801166293*^9,
3.765581957132081*^9}},ExpressionUUID->"dc20daa6-41ab-4edb-b3b7-\
312b04227c67"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(*",
RowBox[{
"Note", " ", "that", " ", "these", " ", "file", " ", "paths", " ", "will",
" ", "have", " ", "to", " ", "change", " ", "if", " ", "this", " ",
RowBox[{"isn", "'"}], "t", " ", "on", " ", "my", " ", "computer"}],
"*)"}], "\[IndentingNewLine]",
RowBox[{
"Import", "[", "\"\</home/ctbus/Pictures/Selection_004.png\>\"",
"]"}]}]], "Input",
CellChangeTimes->{{3.76558199385526*^9, 3.765582018952257*^9}, {
3.76558234163274*^9, 3.7655823699446383`*^9}, {3.765586005122175*^9,
3.765586020497303*^9}},
CellLabel->
"In[2084]:=",ExpressionUUID->"88fa6c54-edb9-43c0-b77a-8edcf48e72ca"],
Cell[BoxData[
GraphicsBox[
TagBox[RasterBox[CompressedData["
1:eJztnftzFdWWx5mZX+bH+Rfmv5gCxcslkAQIgQTkqRkoICNB0QAhIAaBMEhu
eARJIDxFZAaoi7mGgPKUaAgIF0go79QlMni5RsAZGSVxqkzVYGads5Jt06dP
n373Xud8V7UW6dP92d/eZ53Ve+3evfc/zl9asuhvR4wYsezv6X8l81aOqayc
t6r0H+iP6a8te6X8tYULCl9bvrB8YeU/zf872vkH+u/k34wYkfj3oMF6e3sH
AzKggNIU9fBUWV7hqOQ2pvp6nyaqgNIYJVEzUEC5sgcnKxJRsXjhb+j/hWuu
9GuhCiidURI1AwWUG3vUUp5oK5ad6KwtpX9MrrwWQGTU6QKBCh4lUTNQQLmw
oTy6ouXhQEfdjKCyaY0uEKgQUBI1AwWUcxvKo8tPPRgcvNdZXxRQNq3PBQIV
BkqiZqCAcmxDefSsk48SqK8766YHk01rc4FAhYKSqBkooJyaeh5dXFY6p2zK
zBn5AT2b1uUCgQoHJVEzUEA5tKE8OnXznU1rcoFAhYSSqBkooJzZUB5d1Hj3
Z4Xqv15dGEA2rccFAhUWSqJmoIByZEN59Oy6rwYMqP4r1ZP9Z9NaXCBQoaEk
agYKKCc2lEdP39Ez8Ayq79qaMb6zaR0uEKjwUBI1AwUUUECFipKoGSiggAIq
VJREzUABBRRQoaIkagYKKKCAChUlUTNQQAEFVKgoiZqBAgoooEJFSdQMFFBA
ARUqSqJmoIACCqhQURI1AwVURvvscuf+9z+orduyZFkVbfnF00blFY4rKuE/
aT99SsdErAoonVG9Brt9+3ZvQAYUUPGibnV1Hzl6fOmKVdYTR1htFCrpeDqL
zg1JFVBSUJFFYKCAigbV199PLUBjxCtbtHjfocOnPjl7o6ubNjqAD+M/aT99
SscYTyECHxaUKqDkoiRqBgooZRwSOVOmbWXNOgp6Dx4+cginI+l4OotPJ47D
8CixroByjpKoGSig2Hru3i2dU8YxraKyiv7k/U/6+i5f/cJVKXQuERhFTIXy
oMqtAaUhSqJmoIAio5aeComUHRs/unGr67lxE/7qXgNxVH5NfA+qPBhQGqIk
agYKqIamZg5f2xt3W55F0XLFm2u9lVi7uZ7hVIorVd4MKA1REjUDleOo6pr1
GRt19/5ynw642X3bW6GqOUplOVTl2YDSECVRM1C5jKqt20LxanxxacZuwLpt
O+bML/+/p0+9lUt8KoXKohIzqvJjQGmIkqgZqJxFHTvR4jAqkvX19Y+bXPph
a5vnolVspHJtVPk0oDRESdQMVG6i2js6Ob2lfzg8d2fz3ikzX/rll188l65y
alOhmtcVUD5REjUDlYOoBw8f8WBFbrzd6Or+7r/+O+O597/ppVNu3OryI2Df
ocM8xNE4PFLnugLKP0qiZqByELVkWWKQYe3met751oZNr62odnJ6RWWVOsuz
8Qhw44MYnesKKP8oiZqByjUUtQ+5a1G9k/JN77fPj5/oZBT3mQsXfzuxeP07
vyOCZw1ULnc2qgGT2tYVUIGgJGoGKtdQ3FyklNa4v6Gp+cWX52d86Lzn4CE6
d9a8RU6e19gYJ9SkRKnyQzMaUBqiJGoGKqdQLa1tpuYi208//W/BlOnnLl5K
d2J7R2fpnLKS2WWL31ixZv1GnzJUo5GfwuhZV0AFhZKoGaicQi2oWJpuLPeu
fQcsexqpcUhNO4pj3Mj8sLVt6qyX/CvhJ9QVlYlGo551BVRQKImagcodFLXT
eLSM5Yw3/HrLw0ffGY/nEeC1m+vVKV/95z3a8z8//BCgGA3rCqgAURI1A5U7
KGMjzdLmv/Jq84H3+N/UPswvnmacZoft6dOn4yaXXvr8sn89PAMPZdMa1hVQ
AaIkagYqd1A8n0PqiyfK9r53uKy8QnUnphv7/Ub1m4179hv3OJ+z0Wj86g2p
0rCugAoQJVEzULmD4kHdNkHs9x99NCqvQHUnprODh4+YpoOgth9F1NNnzjmf
tXswGU55sLeGdQVUgCiJmoHKEZTq00v3KXcnjhpbYJqPMdXOXvj0ldeXG/eo
aWkpyhEnI0EZn6VbXQEVLEqiZtGojitXj534Q2vbaf8oNt0uMEAUj+u27GA0
didOnDbzYvvn9qjLV7+YM7/cRODhN2qjZJwy5YwNSI6oZ85fcHs56Uy3agcq
yoKAGkxOhFU8Yw79rIpnzq1v2KmJKm1RloExtTtx7oJ/aTl5yh51q/s2xc/U
/QQhlGnpQPsGJAJjLqAkahaK2rKj6YWCIvXro3837T0QuyqdUfxIemXNOv7T
NDpR2avLqw8dOWqPonOfGzfB8iMOdNsbd6slsVQDcv/7H6R2b/JhLT5mMzOZ
btUOVJQFOTS6g6sV37J+Gzm2IHYNYV1acKgNySkgKHCNenZ0orKa2k07du3J
4JzfPqDT+3/6KfUjDozcRCS4cdFA3kyrJ7y1YVOwX9zIPL3cYOTYhGfuPnDQ
zw/5mcrXLMikQ/UaTLe1sOlGnFc0NXbfiMoD9fpFBHlpwaE4MB470ZLuZed1
m+rSrfzyq88nA6Nl/6EpMJ4+c04tncCbqYGaCIyBhjLtAmNSz7JVa/z/nNl0
CzLpUPZh07MBZW+Ne/aPzp+k3I9S6V37DsauSmcUp9IZJw1btuqtg4eP2B/z
H3++MyrN020OjLV1W3iqCrWVzLZ+FpP1qTRPl7FtZ5N/FJtuF+gEJVGzXFR9
w85xkxNPQvOKSoJyPK0uMFiUzVNpoy2oWHrio5P2x1y9/scJJTNS9/OjHGM8
HF9cSqE4lx++IDBGWRBQbGv/9R3yupVvrfWPYtPtAgNEOQyML748//yn7fbH
nL3w6cyyBcY9PODHGBLLFi2mNiqG6yAwRlkQUGzwOufGA7wpfNkcMzAwMHr8
xIxzLf6+pXXRq28Y96gB3txEdD5bI5+lW10FiIKLRlkQUGzwOlfGY7BtXgm8
catrTOHkp5mmq93euHv5mzXGPYlXAp01EY3GrwSSKg3rKigUXDTKgoBig9e5
soyTSBx4/8jSFasycqi5aBrSg0kk0hlcNMqCgGKD17myjNOO/XP5EpuwyUbt
ydH5ky593uFfTy5MOwYXjbIgoNjgda7MfqLau/e+fm7chIy58J97viLCj0+e
BChGw7oKCgUXjbIgoNjgdW7NZmmDre82Va15OyOhpbXtxZfn+1difEVRz7qC
iwaFkqhZNApe59Z4Maz84mmmluEPP/z424lTPv0sw7w6ZBt/t7W2botPGVQ6
D+/J+sWw4KJRFgQUG7zOA4p79kyv5m3e2uBk+dSnT58WTn0x3czezo2/ONXb
qW1d+YfARaMsCCg2eJ0HFI/0NjYav+n9lvZ0Xr2W8fRLn3dMKJmRcTyPvanm
onojRtu68g+Bi0ZZEFBs8DpvKPVGM+9cs37jq8stFk5NtcRqL837fGrgaSXU
BGiDeteVT4OLRlkQUGzwOm+oBw8f8WBvHpzzx5tdvd8+yHjuo+++o1Puf+NL
DH9lVLpx6KPOdeXT4KJRFgQUG7zOM6q9o5NHyzjvMGw+8N4rry/zU3q6QjWv
Kz8GF42yIKDY4HV+UPziSX7xNCevNvf19RdMmd5x5arnoqkU7lpMHUOuf115
NrholAUBxQav84nilwSdxMb6hp2miSNc2Y2ubo6KlhNCiqgrbwYXjbIgoNjg
df5RaukBy1HfbPf+cv/58RPvfOV0zhyT8Vhu0wMXe1WeTTcUXDTKgoBig9cF
guIlYGhraGq2PGvxGytqajd5K3FoueqU1V4yqvJmuqHgolEWBBQbvC4olGrU
lZVXmCbcvn7z1ujxEz3Mn0McomVsjtqo8mC6oeCiURYEFBu8LkBUz927alXo
JcuqVK/jj0+euJ1Lh9dmVau9ZOzAFFdXDu30mXO81sPSqsyTuTk0rS7QIUqi
ZtEoBMbAUVSlPMSRtuqa9fTTdt5WpCONywKmLlrtWZVz0wHV19+///0P1PI3
z+dPPPRv/x67qhhREjWLRiEwhoGi3zVX7K8LuJRX0C+dgt7N7tu08buE9H/+
k/bTpyprHjW8TKrz2bzl1pXJqG2s+lTVwjexq4odJVGzLNRnlzvpN8irc9L2
m8LJo5Jrp/KftJ8+pWMiVpWVKGr+0Y96Zc061YDMuNGRdDyd5bZDUnpdDSaz
ZuOKsaa1EbPgAt2ieg0mZS1sWahbXd1Hjh5fumJV6i9x5NjEguapa6yPKyqh
4+ksOjckVTmFamlt2/pu4+q16xdULKUtr2gqVfLYSVP4T9pPn9IxEavSAXWn
p2d7464pM+ey41HNUFWkep3cC/SMiiwC5yCK+2qeyekWLaYcjdokdDumTeV0
/Cftp0/pGOMpRMjBnA6oCFDqUb5qJeqgSkOURM16ojgkqqWK3SZoKg3k04nj
MDxKrCugYkQlOhWTbw/xVjqnjHLqVE+Te4GBoCRq1hBFzqae6FVUVjlfpNgS
pZY8JmbOjhsBKlQUP65Sg53oRtzQ1Jwj0wc5QUnUrBtKpScU0EwjjT1bYqTx
cH6dsyONgYoARd6lbsQ83ol9OGsu0BtKomatUHSfzfj6mGdTKU+6F9/SqfJm
QOUsKjW/PnL0uPOO7pBUxYiSqFkflBoYbNOo45myLGcRVHP92ayMrJqjVJZD
VZ4NqBxHZcyvY1EVC0qiZk1QPCx2fHGpfTcg+VW6J4DqHm1/ayY+D8yzXOpO
RF0BJQtFt2NetdaUX8erKkqURM06oLgdmDEqsqlnzcYAqNZXshkyoUzFxpya
MRWoeFEOn19HrCoalETNsaPczrGv0mFjxq12uoXkzhz7QOmA8p9fa36B8RaU
NShyiXTT3dsYt/eMs55yM5L8zTmEXwem0jGsAqjoUemeX8erKiSURM3xovj1
Uif5r9FM3Ymq49HhXC7KOJwaH8ToXFdAZQ2K/JZaAmqwLt3otzfudthuFHGB
cRWUHShe+Z28wm1PC5+osmn1qNrtIz8qlxufubDyO1A6oMhFa+u2qFe6KMch
H3bl/5pfYLwFZQeKm4tum3ls3EvD2TQP3qbExAOHE2pSolR5gFgaUEAZUZ9d
7jROv0Ou6+3ZtLYXqENBWYBqaW3z1lxkUxMGmlqPbk01GvkpjJ51BZRcFGfN
avodV1lzeKoiRknUHBeKR3Z5i2aDhn5F7qghf/OshJ9Qc4NTz7oCSiKKJ631
kzWHoSoWlETNsaDIPZwMxrY34/Ribh/fpBOjYV0BJQ5lmrSWsuYz5y/EripG
lETNsaCMjTSfEN78zMBDxgMnKJvWsK6AkoIyLfVizJqz4wI9oyRqjgXF421c
jV1MNdXSo6ajTz38XJtUaVhXQOmPMi31kpo1S79AnyiJmmNBcceL/xfqAwmw
g8M9lqRKw7oCSmdUatZs+axZ7gUGgpKo2Tfq8aklSa+o7Owz7u6/Xl2YbM59
8th0gmrp+ddDd2pXq9HZGEuSU+1AxY+iZqFxpTBqNKa713tUNdBdU5i66NiM
WdW7z90f8AIMRJV7lNDv1yfq+09eT3xfheuuGOLTz12b8hNf4uunzHFxaHi2
zw7GwI27GXO8kxwoDygKj888B6zbktpo9BsYC6dROpPchsNjYdWph16QAahy
jxL9/XpHPT67MPFlTavpUnexgS+3JUcpLDn7fcrhCIxAZR+KvNo4eU5ZeQVl
2X5VDQfGhRd/bXPc63xvIQ9U2/tXL0yDITCGjHp8LplNF227+zPvGLi7fXry
C03JoweHnyYbp4DQwfi96ZbWtqCAor5BoIJBUSq979BhlV/zKmy0M8DA2Nvb
0z7UeXW9z+ZcB4bAGDbq+4vJbHr67h5uM94/Vpomjx4cfmkl45uAvCKqaSf5
2M3u27QdO9FCLmfcaA9/5O2ZDqva+m6jh3MtTdY3CFSwKFN+vfrtDV5eALQO
jH86VZ7YOaam+2fP+oZQIdZVr8GkrIUdPOpPHyab93N3Xk/8dfPAvIQ/lB/7
0upYCj5OAiO5Ft1w+/r7KdZR3KuuWa9eIqA7MmW+vFH+ov6t7tSlc8roeDqL
znX4zXJg3FhXH3pdAZUzqDPnL6xeu16Fx9nzFx05etzF+V9fWMFPME/0DO/q
OXtozYQErWhxa4/duQ4s1LqyD5ueTRqq/1xl4hucdfJR4jl1Od/mrNqLw6l0
xndV6A5bMGX6yLwC7pDc3ri7vaPTSWuQjqEj6Xg1351lf7jJkEoDFRKKHJIa
A6n5deYzrZ9KJyE1Zx/4FhZZXWn4pUSG6rtYNfS05fGlJck8+px1XMzw8IUc
Rk1V98bKN/0Pd6Qgyb3ixCRyOhoevgAVNsrJ8+tnzPxUejKfWLSt22fvolFV
IIbAmPaz/s5kPKw6dXHdmESEvJT6PJotXWCkrJmXTyXnoQjGoxOpIZduRT9X
xpOcsFvS/Tp16CMCI1DRoOyfXz9j5j7GgS8bk+8bFq9rD2ItVgTGSFD97cls
unRe4r62JE0ePTg8wJvugMadFLVoDwUu0z2U30nxs6qayQhFpVBZpvdlMMAb
qChRiRlrDeGRHNJipqnUhy/93atLk8fX+n0kbakqJJSULyUkVF/HmjFDX3RV
ujyajftbOKulSEVJLu1JNwXZvkOH6a7qQ7WF8TsLVC6HXA6/tEditQMlDkVe
p1ZR5+zJehE3q6fSdz5elc/Dhq+JmcFMxJcSIqq/s5K7RCrT5tFsxnecySvs
X+vjuWQ9z9xog6VyOaPHJBJARYAil6Os2Tj9DrmcXRd6muE656qTnY3Tt9z0
FxoRGHVDuZ12TA3dCaT0VMO0Y0CFirrV1d3Q1GyctFb1oseoCoFRN5SHiWrL
Fi32tjqMKzEa1hVQolFOs+ZoVUWMkqg5LpTbpQ34Wbb/mcpSzfiKop51BZQ4
lGmB1LyiqRmy5khUxYWSqDkuFC+G5SpBDmrojtGodE5wsBgWUIGgUhdIpQh5
p6cnXlXxoiRqjhHFPXvOE+TAh+4MDr8JqHo7ta0roPRHmRZINWbN2XGBnlES
NceI4uzYeaORAmNN7aYJpTPJ/dQd2TgSjPY3NDWTfzrMWVRzUQVbbesKKG1R
pqzZ8lmz6Av0j5KoOV4UNxop9bA5kgc5lJVX0JHFM18anT9p7cZ3eO4d2sgD
1b/JPyndpuRFvVBgH3K5V9w4AZrOdQWUbijLrNnS5YReYFAoiZrjRZFr8WBv
y3Vb2PHY5Sjn5buwk6E7PC0eR0giWB7MSTSVbry561xXQOmGonsxzz3CGyUs
6V7uE3qBQaEkao4d1d7RyX5lHMbAK1FSAKQmZWqnovOhO3QuEXg+E2N4tCx0
UPu6AkpDFN1YtzfuNk55l/oyvugL9I+SqFkHFL94QuFLLQ9NoY/ae+lGfLkd
ukMcoqn3CqkUTn9Sm6n61xVQeqIoElIuw0mKmjxH+XMWXKAflETNmqD4JUEV
G5VHpTMPQ3eYSUGVo6LlhJAi6goonVGW+XXsquJFSdSsD0q5k5NR396G7vBY
7lHpV5yRUldAaY4y5ddTZs61nOwuYlVxoSRq1gpFvsSO1NDUnJHgdtYdfo5D
G5XiSpU3Awoo+/w6LlXRoyRq1g2lGnUU9OwbhM5n3UnMwZgc7ZOxOSqrroCS
gjpz/oLD59dRqkJglIWiW6q6yZIL2dxheeiOTSl0rnoZgZgZb9bi6gooQSgn
z6+jVxUBSqJmbVHG9Xmra9bTHdbyMbRlC5COpOPVrCbEcTi8R2hdASUI5TO/
1v8CYywoR1A8l6zxvT/KiOkmS0GPl5Dmuy0vsUob7adPVdbMm/0suB5UAQVU
ICjV6e38mWMEqsJASdSsP4qaf+QzK2vWqQak2kaOpa2Al1g1bnQkHU9nuZ3o
SXpdAaU/inySX15QPTxZee/uNZhWi31nJaqltW3ru42r165fULGUthcKJpFr
jS6YxH/SfvqUjolYFVBAOUGdOX9h9dsb1O2bPPbI0eOxqwoJFVkEBirVONHe
trPJP4pNtwsEKjtQFACNPTy1m+s9D9rR8wLtURI1i0YhMAKlOar19Mejx0/0
ljWHpypilETNolEIjEBpjqpODl8snjE3qGUudbtAJyiJmkWjEBiB0hwFF42y
IKDY4HVAaY6Ci0ZZEFBs8DqgNEfBRaMsCCg2eB1QmqPgolEWBBQbvA4ozVFw
0SgLAooNXgeU5ii4aJQFAcUGrwNKcxRcNMqCgGKD1wGlOQouGmVBQLHB64DS
HAUXjbIgoNjgdUBpjoKLRlkQUGzwOqA0R8FFoywIKDZ4HVCao+CiURYEFBu8
DijNUXDRKAsCig1eB5TmKLholAUBxQavA0pzFFw0yoKAYoPXAaU5Ci4aZUFA
scHrgNIcBReNsiCg2NbWvkNet2LNWv8oNt0uECjpKATGKAsCiqxu2468oqnk
dXlFJfUNOzVRBRRQRkNgjLIgoLbsaHqhoEgtu0b/btp7IHZVQAFlMgTGKAty
aO0dnWpd76zfRo4tiF0DNmyW26q3N/j/ObPpFmTSoXoNptta2C2tbZxs5sKG
wIhN223rzkb/P2c23YJMOlRkERgoozXu2T86f5JyPEqld+07GLsqoIACKsaC
gCKrb9hZMvtliorFM+cG1Yej1QUCBVR2oCRqFo3q/OLasRMtbR9/4h/FptsF
AgVUFqAkagYKKKCAChUlUTNQQAEFVKgoiZqBAgoooEJFSdQMFFBAARUqSqJm
oIACCqhQURI1AwUUUECFipKoGSiggAIqVJREzUABBRRQoaIkagYKKKCAChUl
UTNQQAEFVKgoiZqBAgoooEJFSdQMFFBAARUqSqJmoIACCqhQURI1AwUUUECF
ipKoGSiggAIqVJREzUABBRRQoaIkagYKKKCAChUlUTNQQAEFVKgoiZqBAgoo
oEJFSdQMFFBAARUqSqJmoIACCqjAUb0Gk7IWNlBAAQVUqKjIIjBQQAEFlESU
RM1AAQUUUKGiJGoGCiiggAoVJVEzUEABBVSoKImagQIKKKACR/0/mO+AdQ==
"], {{0, 176}, {435, 0}}, {0, 255},
ColorFunction->RGBColor],
BoxForm`ImageTag[
"Byte", ColorSpace -> "RGB", Interleaving -> True, MetaInformation ->
Association["Comments" -> Association["Software" -> "Shutter"]]],
Selectable->False],
DefaultBaseStyle->"ImageGraphics",
ImageSizeRaw->{435, 176},
PlotRange->{{0, 435}, {0, 176}}]], "Output",
CellChangeTimes->{3.765582370691959*^9, 3.765585457642551*^9,
3.765585592915601*^9, 3.765585672244464*^9, 3.765588052386448*^9,
3.7656417204766493`*^9, 3.765723641908236*^9},
CellLabel->
"Out[2084]=",ExpressionUUID->"2729c810-504c-45c1-ae64-9c4baae9687d"]
}, Open ]],
Cell[CellGroupData[{
Cell["Section A", "Section",
CellChangeTimes->{{3.765019502956297*^9,
3.7650195069513283`*^9}},ExpressionUUID->"a275aa57-4bff-4389-921b-\
98cb7c4c1cc2"],
Cell[TextData[{
"In Section A, we are focusing on a simple circuit with just one battery and \
one resistor. We will attach the observer circuit to this simple circuit and \
measure the voltage when the load resistor goes to infinity (is not \
attached). This voltage is the Thevenin voltage of the simple circuit. The \
Thevenin resistance is ",
Cell[BoxData[
FormBox[
SubscriptBox["V", "th"], TraditionalForm]],
FormatType->"TraditionalForm",ExpressionUUID->
"6c447d55-8fd0-4094-bb07-a31f9228a75a"],
" / ",
Cell[BoxData[
FormBox[
SubscriptBox["I", "ab"], TraditionalForm]],
FormatType->"TraditionalForm",ExpressionUUID->
"15141290-d199-4712-a2ca-d4f4411317ac"],
" where ",
Cell[BoxData[
FormBox[
SubscriptBox["I", "ab"], TraditionalForm]],
FormatType->"TraditionalForm",ExpressionUUID->
"f652d1ae-2865-4e4e-8b05-7c6c4a66e835"],
" is the current through the load resistor when it has resistance of zero. \
To get this, we will measure the voltage (because voltmeters are more \
reliable than ammeters) for varying load resistances. We can then calculate \
the current from this and plot voltage vs current. The linearization should \
give us a y-intercept of the current when the load resistor goes to zero."
}], "Text",
CellChangeTimes->{{3.7655817388854733`*^9, 3.765581778882536*^9}, {
3.7655836540626993`*^9, 3.76558366977407*^9}, {3.765583706492509*^9,
3.765583846248474*^9}, {3.7655842374612923`*^9, 3.765584287219769*^9}, {
3.765584322691983*^9,
3.765584334910338*^9}},ExpressionUUID->"4d253268-d852-45bd-907d-\
98ef7ce90ce0"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"voltResist", "=",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"75.25", ",", "15.3"}], "}"}], ",",
RowBox[{"{",
RowBox[{"152.95", ",", "30.3"}], "}"}], ",",
RowBox[{"{",
RowBox[{"363.6", ",", "75.3"}], "}"}], ",",
RowBox[{"{",
RowBox[{"708.9", ",", "150.3"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1333.0", ",", "300.3"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2788", ",", "750.3"}], "}"}]}], "}"}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{
"The", " ", "factors", " ", "of", " ", "1000", " ", "on", " ", "the", " ",
"resitances", " ", "here", " ", "and", " ", "for", " ", "\[Delta]I", " ",
"are", " ", "added", " ", "to", " ", "compensate", " ", "for", " ", "the",
" ", "voltages", " ", "being", " ", "mV", " ", "instead", " ", "of", " ",
"V"}], "*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"f", "[", "x_", "]"}], ":=",
RowBox[{"{",
RowBox[{
RowBox[{"x", "[",
RowBox[{"[", "1", "]"}], "]"}], ",",
FractionBox[
RowBox[{"x", "[",
RowBox[{"[", "1", "]"}], "]"}],
RowBox[{"1000", "*",
RowBox[{"x", "[",
RowBox[{"[", "2", "]"}], "]"}]}]]}], "}"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"voltCurr", "=",
RowBox[{"Map", "[",
RowBox[{"f", ",", "voltResist"}], "]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{"voltCurr", "//", "TableForm"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Delta]V", "=",
RowBox[{"{",
RowBox[{
"0.04", ",", "0.04", ",", "0.1", ",", "0.1", ",", "0.1", ",", "1"}],
"}"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Delta]Rs", "=",
RowBox[{"{",
RowBox[{
"0.153", ",", "0.303", ",", "0.753", ",", "1.503", ",", "3.003", ",",
"7.503"}], "}"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Delta]I", "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Sqrt", "[",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{
FractionBox["1",
RowBox[{"1000", "*",
RowBox[{"voltResist", "[",
RowBox[{"[",
RowBox[{"x", ",", "2"}], "]"}], "]"}]}]], " ",
RowBox[{"\[Delta]V", "[",
RowBox[{"[", "x", "]"}], "]"}]}], ")"}], "2"], "+",
SuperscriptBox[
RowBox[{"(",
RowBox[{
FractionBox[
RowBox[{"-",
RowBox[{"voltResist", "[",
RowBox[{"[",
RowBox[{"x", ",", "1"}], "]"}], "]"}]}],
RowBox[{"1000", "*",
SuperscriptBox[
RowBox[{"voltResist", "[",
RowBox[{"[",
RowBox[{"x", ",", "2"}], "]"}], "]"}], "2"]}]], " ",
RowBox[{"\[Delta]Rs", "[",
RowBox[{"[", "x", "]"}], "]"}]}], ")"}], "2"]}], "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "1", ",",
RowBox[{"Length", "[", "\[Delta]V", "]"}]}], "}"}]}], "]"}]}],
";"}]}], "Input",
CellChangeTimes->{{3.765498509356701*^9, 3.765498614940942*^9}, {
3.765498743461116*^9, 3.765498908125146*^9}, {3.765569185801255*^9,
3.765569188839498*^9}, {3.7655692929694366`*^9, 3.765569298802854*^9}, {
3.7655701973099613`*^9, 3.765570199609994*^9}, {3.765570383427478*^9,
3.765570508464315*^9}, {3.7655705569568996`*^9, 3.7655705720361023`*^9}, {
3.765570613571186*^9, 3.765570629712099*^9}, {3.765570683602092*^9,
3.765570749977419*^9}, {3.765570818749707*^9, 3.765570917547606*^9}, {
3.765585452359762*^9, 3.765585453364806*^9}, {3.765585510076092*^9,
3.765585510922338*^9}, {3.7655855872549*^9, 3.765585588763268*^9}, {
3.765585625413685*^9, 3.7655856687102737`*^9}, {3.765585756569837*^9,
3.7655858099315567`*^9}, {3.765585850366336*^9, 3.7655858589536743`*^9},
3.765724527711447*^9, 3.765724624352703*^9},
CellLabel->
"In[2183]:=",ExpressionUUID->"10e76ef1-e7a6-418d-a33f-aac7c3beb9de"],
Cell[BoxData[
TagBox[GridBox[{
{"75.25`", "0.004918300653594772`"},
{"152.95`", "0.005047854785478547`"},
{"363.6`", "0.004828685258964144`"},
{"708.9`", "0.004716566866267465`"},
{"1333.`", "0.004438894438894439`"},
{"2788", "0.003715846994535519`"}
},
GridBoxAlignment->{
"Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
"RowsIndexed" -> {}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[2.0999999999999996`]},
Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}, "RowsIndexed" -> {}}],
Function[BoxForm`e$,
TableForm[BoxForm`e$]]]], "Output",
CellChangeTimes->{
3.765498908662162*^9, 3.765499096239449*^9, 3.7655679786168213`*^9,
3.765569194017908*^9, 3.765569300214981*^9, 3.7655702005258703`*^9, {
3.765570891716304*^9, 3.7655709201420183`*^9}, 3.765571280264316*^9,
3.765571352035079*^9, 3.765584504382876*^9, 3.765585457664407*^9,
3.765585512762837*^9, 3.7655855929404087`*^9, 3.7655856722651443`*^9,
3.765588052422309*^9, 3.765641601250224*^9, 3.7656417205002737`*^9,
3.765723641947702*^9, 3.765724528158945*^9, 3.7657246247566566`*^9},
CellLabel->
"Out[2186]//TableForm=",ExpressionUUID->"699775ec-f60c-4c71-90b0-\
3f28ab02309c"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"fit", "=",
RowBox[{"LinearModelFit", "[",
RowBox[{"voltCurr", ",", "x", ",", "x", ",",
RowBox[{"Weights", "\[Rule]",
FractionBox["1",
RowBox[{
SuperscriptBox["\[Delta]V", "2"], "+",
SuperscriptBox["\[Delta]I", "2"]}]]}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"fit", "[",
RowBox[{"{",
RowBox[{"\"\<BestFit\>\"", ",", "\"\<ParameterTable\>\""}], "}"}],
"]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Ith", "=",
RowBox[{"fit", "[",
RowBox[{"[",
RowBox[{"1", ",", "2", ",", "1"}], "]"}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Delta]Vth", "=", "0.01"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Delta]Ith", "=", "0.0000463765"}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Vth", "=", "10.17"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Rth", "=",
FractionBox["Vth", "Ith"]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Delta]Rth", "=",
RowBox[{"Sqrt", "[",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{
FractionBox["1", "Ith"], "\[Delta]Vth"}], ")"}], "2"], "+",
SuperscriptBox[
RowBox[{"(",
RowBox[{
FractionBox[
RowBox[{"-", "Vth"}],
SuperscriptBox["Ith", "2"]], "\[Delta]Ith"}], ")"}], "2"]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Rth", " ", "\"\<\[CapitalOmega]\>\""}], " ", "\[PlusMinus]", " ",
RowBox[{
"\[Delta]Rth", " ", "\"\<\[CapitalOmega]\>\""}]}], "\[IndentingNewLine]",
RowBox[{"Show", "[",
RowBox[{
RowBox[{"ErrorListPlot", "[",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"voltCurr", "[",
RowBox[{"[",
RowBox[{"i", ",", "1"}], "]"}], "]"}], ",",
RowBox[{"voltCurr", "[",
RowBox[{"[",
RowBox[{"i", ",", "2"}], "]"}], "]"}]}], "}"}], ",",
RowBox[{"ErrorBar", "[",
RowBox[{
RowBox[{"\[Delta]V", "[",
RowBox[{"[", "i", "]"}], "]"}], ",",
RowBox[{"\[Delta]I", "[",
RowBox[{"[", "i", "]"}], "]"}]}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",",
RowBox[{"Length", "[", "voltCurr", "]"}]}], "}"}]}], "]"}], "]"}],
",",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"fit", "[", "x", "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "3000"}], "}"}]}], "]"}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<Voltage (V)\>\"", ",", "\"\<Current (A)\>\""}], "}"}]}],
",",
RowBox[{"ImageSize", "\[Rule]", "Full"}]}], "]"}]}], "Input",
CellChangeTimes->{{3.7654986317321672`*^9, 3.7654986395254917`*^9}, {
3.7654989383010798`*^9, 3.765498990226956*^9}, {3.7654991474924*^9,
3.765499169837811*^9}, {3.76557098943368*^9, 3.7655710206259203`*^9}, {
3.7655710523631487`*^9, 3.765571052700676*^9}, {3.765571085739923*^9,
3.765571206734272*^9}, {3.765571397672771*^9, 3.765571413645734*^9}, {
3.765584480902587*^9, 3.765584531817102*^9}, {3.765584563731435*^9,
3.7655845997638607`*^9}, {3.76558466128808*^9, 3.765584699546194*^9}, {
3.765585115989018*^9, 3.765585116854608*^9}, {3.7655851553450937`*^9,
3.765585274840124*^9}, {3.765585719842351*^9, 3.765585729043605*^9},
3.765588049560601*^9, {3.7656415760850763`*^9, 3.76564159715377*^9}},
CellLabel->
"In[2092]:=",ExpressionUUID->"b22730ee-3e0e-461e-b014-f58ff259da85"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"0.005026387973566885`", "\[VeryThinSpace]", "-",
RowBox[{"4.2737284979255254`*^-7", " ", "x"}]}], ",",
StyleBox[
TagBox[GridBox[{
{"\<\"\"\>", "\<\"Estimate\"\>", "\<\"Standard Error\"\>", "\<\"t\
\[Hyphen]Statistic\"\>", "\<\"P\[Hyphen]Value\"\>"},
{"1", "0.005026387973566885`", "0.00004637651911649078`",
"108.38217419770899`", "4.345836442195838`*^-8"},
{"x",
RowBox[{"-", "4.2737284979255254`*^-7"}], "1.1175572769539289`*^-7",
RowBox[{"-", "3.8241695401726683`"}], "0.01871130009132577`"}
},
AutoDelete->False,
GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Automatic}}},
GridBoxDividers->{
"ColumnsIndexed" -> {2 -> GrayLevel[0.7]},
"RowsIndexed" -> {2 -> GrayLevel[0.7]}},
GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings->{
"ColumnsIndexed" -> {2 -> 1}, "RowsIndexed" -> {2 -> 0.75}}],
"Grid"], "DialogStyle",
StripOnInput->False]}], "}"}]], "Output",
CellChangeTimes->{
3.765498951261845*^9, 3.765499096271295*^9, {3.765499149042663*^9,
3.765499170372085*^9}, 3.765567978646985*^9, 3.765569304357066*^9,
3.7655702025897837`*^9, {3.7655710311783*^9, 3.765571053397928*^9},
3.765571091413966*^9, 3.765571209733469*^9, 3.765571280286643*^9,
3.765571352059122*^9, 3.765571418638863*^9, {3.76558448352351*^9,
3.765584518278372*^9}, 3.765584704138588*^9, 3.765585278003827*^9,
3.765585457683865*^9, 3.765585514812145*^9, 3.765585592964299*^9,
3.7655856722847013`*^9, 3.765585730562642*^9, 3.765588052448309*^9, {
3.7656415976361713`*^9, 3.765641603961117*^9}, 3.765641720517993*^9,
3.765723641974123*^9},
CellLabel->
"Out[2093]=",ExpressionUUID->"5d8b0f87-ac98-44ce-bd4b-4c8705e62e0d"],
Cell[BoxData[
RowBox[{
RowBox[{"2023.3217279451358`", " ", "\<\"\[CapitalOmega]\"\>"}],
"\[PlusMinus]",
RowBox[{"18.77410355207695`", " ", "\<\"\[CapitalOmega]\"\>"}]}]], "Output",\
CellChangeTimes->{
3.765498951261845*^9, 3.765499096271295*^9, {3.765499149042663*^9,
3.765499170372085*^9}, 3.765567978646985*^9, 3.765569304357066*^9,
3.7655702025897837`*^9, {3.7655710311783*^9, 3.765571053397928*^9},
3.765571091413966*^9, 3.765571209733469*^9, 3.765571280286643*^9,
3.765571352059122*^9, 3.765571418638863*^9, {3.76558448352351*^9,
3.765584518278372*^9}, 3.765584704138588*^9, 3.765585278003827*^9,
3.765585457683865*^9, 3.765585514812145*^9, 3.765585592964299*^9,
3.7655856722847013`*^9, 3.765585730562642*^9, 3.765588052448309*^9, {
3.7656415976361713`*^9, 3.765641603961117*^9}, 3.765641720517993*^9,
3.765723641978142*^9},
CellLabel->
"Out[2100]=",ExpressionUUID->"6160e908-9eb0-4c73-a1f5-5381b439f2b6"],
Cell[BoxData[
GraphicsBox[{{{}, {{},
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[
0.012833333333333334`], AbsoluteThickness[1.6],
PointBox[{{75.25, 0.004918300653594772}, {152.95,
0.005047854785478547}, {363.6, 0.004828685258964144}, {708.9,
0.004716566866267465}, {1333., 0.004438894438894439}, {2788.,
0.003715846994535519}}], {{
LineBox[{{75.29, 0.004918300653594772}, {75.21,
0.004918300653594772}}],
LineBox[{
Offset[{0, 1.5}, {75.29, 0.004918300653594772}],
Offset[{0, -1.5}, {75.29, 0.004918300653594772}]}],
LineBox[{
Offset[{0, 1.5}, {75.21, 0.004918300653594772}],
Offset[{0, -1.5}, {75.21, 0.004918300653594772}]}],
LineBox[{{75.25, 0.00496755309627445}, {75.25,
0.0048690482109150935`}}],
LineBox[{
Offset[{1.5, 0}, {75.25, 0.00496755309627445}],
Offset[{-1.5, 0}, {75.25, 0.00496755309627445}]}],
LineBox[{
Offset[{1.5, 0}, {75.25, 0.0048690482109150935`}],
Offset[{-1.5, 0}, {75.25, 0.0048690482109150935`}]}]}, {
LineBox[{{152.98999999999998`, 0.005047854785478547}, {152.91,
0.005047854785478547}}],
LineBox[{
Offset[{0, 1.5}, {152.98999999999998`, 0.005047854785478547}],
Offset[{0, -1.5}, {152.98999999999998`, 0.005047854785478547}]}],
LineBox[{
Offset[{0, 1.5}, {152.91, 0.005047854785478547}],
Offset[{0, -1.5}, {152.91, 0.005047854785478547}]}],
LineBox[{{152.95, 0.005098350592651619}, {152.95,
0.004997358978305474}}],
LineBox[{
Offset[{1.5, 0}, {152.95, 0.005098350592651619}],
Offset[{-1.5, 0}, {152.95, 0.005098350592651619}]}],
LineBox[{
Offset[{1.5, 0}, {152.95, 0.004997358978305474}],
Offset[{-1.5, 0}, {152.95, 0.004997358978305474}]}]}, {
LineBox[{{363.70000000000005`, 0.004828685258964144}, {363.5,
0.004828685258964144}}],
LineBox[{
Offset[{0, 1.5}, {363.70000000000005`, 0.004828685258964144}],
Offset[{0, -1.5}, {363.70000000000005`, 0.004828685258964144}]}],
LineBox[{
Offset[{0, 1.5}, {363.5, 0.004828685258964144}],
Offset[{0, -1.5}, {363.5, 0.004828685258964144}]}],
LineBox[{{363.6, 0.0048769903702200945`}, {363.6,
0.004780380147708193}}],
LineBox[{
Offset[{1.5, 0}, {363.6, 0.0048769903702200945`}],
Offset[{-1.5, 0}, {363.6, 0.0048769903702200945`}]}],
LineBox[{
Offset[{1.5, 0}, {363.6, 0.004780380147708193}],
Offset[{-1.5, 0}, {363.6, 0.004780380147708193}]}]}, {
LineBox[{{709., 0.004716566866267465}, {708.8,
0.004716566866267465}}],
LineBox[{
Offset[{0, 1.5}, {709., 0.004716566866267465}],
Offset[{0, -1.5}, {709., 0.004716566866267465}]}],
LineBox[{
Offset[{0, 1.5}, {708.8, 0.004716566866267465}],
Offset[{0, -1.5}, {708.8, 0.004716566866267465}]}],
LineBox[{{708.9, 0.004763737227431898}, {708.9,
0.0046693965051030325`}}],
LineBox[{
Offset[{1.5, 0}, {708.9, 0.004763737227431898}],
Offset[{-1.5, 0}, {708.9, 0.004763737227431898}]}],
LineBox[{
Offset[{1.5, 0}, {708.9, 0.0046693965051030325`}],
Offset[{-1.5, 0}, {708.9, 0.0046693965051030325`}]}]}, {
LineBox[{{1333.1, 0.004438894438894439}, {1332.9,
0.004438894438894439}}],
LineBox[{
Offset[{0, 1.5}, {1333.1, 0.004438894438894439}],
Offset[{0, -1.5}, {1333.1, 0.004438894438894439}]}],
LineBox[{
Offset[{0, 1.5}, {1332.9, 0.004438894438894439}],
Offset[{0, -1.5}, {1332.9, 0.004438894438894439}]}],
LineBox[{{1333., 0.004483284632329324}, {1333.,
0.004394504245459553}}],
LineBox[{
Offset[{1.5, 0}, {1333., 0.004483284632329324}],
Offset[{-1.5, 0}, {1333., 0.004483284632329324}]}],
LineBox[{
Offset[{1.5, 0}, {1333., 0.004394504245459553}],
Offset[{-1.5, 0}, {1333., 0.004394504245459553}]}]}, {
LineBox[{{2789., 0.003715846994535519}, {2787.,
0.003715846994535519}}],
LineBox[{
Offset[{0, 1.5}, {2789., 0.003715846994535519}],
Offset[{0, -1.5}, {2789., 0.003715846994535519}]}],
LineBox[{
Offset[{0, 1.5}, {2787., 0.003715846994535519}],
Offset[{0, -1.5}, {2787., 0.003715846994535519}]}],
LineBox[{{2788., 0.0037530293592409583`}, {2788.,
0.00367866462983008}}],
LineBox[{
Offset[{1.5, 0}, {2788., 0.0037530293592409583`}],
Offset[{-1.5, 0}, {2788., 0.0037530293592409583`}]}],
LineBox[{
Offset[{1.5, 0}, {2788., 0.00367866462983008}],
Offset[{-1.5, 0}, {2788.,
0.00367866462983008}]}]}}}, {}}, {}, {}, {}, {}}, {{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6],
Opacity[1.], LineBox[CompressedData["
1:eJwVjGs0lAkYgNFuyhjUWmZDF7cuumjWJcT7up6wojRUzm5tlCy+mW/mk1B7
LFGsREI0ZifMfOVoLIXc1q7WPbVtQrMuJRsiCSd31v54znOeP8+WU9zDp5UU
FBQ8VvjfpmU1FQ9UNSBLW1STlEGByXkLj7fke3C6mLrHYKXNUv03SMlFGOu/
dLsinYIKvTmFeJKJDrLguLc3KJj3d54KI/XwnZOVB6ZRoKs88j6U3IU2/Pbu
yWsU3OuqeRdE2mL3Y5WF4wkUhNlvHQ4kPXBjTLj19gsUvDrmnBoo+w6HmrMj
r56gwMPC3uleyxmc75GrdzpR0MMyn6tiEcj5Stgs3UHBw46DMRIlAX7aS7vY
qVEQOG3Uu7/0HPZqPWVVTQqARVoGaJZHIvMlypY7BHAqU3DZQvojxtZ9fbal
UgBr3O5i+7af0OG8Y3ikWACvpkoP7zKORRdGjutErABGVDS9ZIpxmPbDF6Rn
kAAcwpWF7c/jcetHlRq2pwA2aLAWs9uuoCLnm8c9bAEYaUa6JkgS0TCuwJRg
CaDYabZAW5KESdcPH22Y50NCK9PP/VYy2jZG5ef38aGl1yrquWUKmjf94Xy2
ng8aRJT3M/NUFEgPFUze4cOHktNb3uhfxzmvJf+AZD6oJ/fO/mmQho1dU6+E
JB84mrkRs5tu4D+XQ2L8OHww81L7YM9IR8tVihHL1nw4or+We1wlA+V+fezg
jXxgFhQOxM9kYH203L56FR9Gu7MVV/dn4vRjn7C0YRJUpdrbOX03kftJN4Td
RkK9oa3Lw9YsNB1dLi8rIaHW6mPoSGs2WtTubFTKIKFv9sN+svEWxlXI59oj
SLjJzVRklAhRJ1oSm3SChOtRbX9Rv+bgjEHlU4YjCUa2hekTOSLUvTHC420j
offuC8VH8b/gFRORhZ8aCSEdLtXF9mK0FmfXMid4UMYOn/i5XIzmr+/nSDp5
sFk+tuug5W0MW9aCz6t44NttHZAtu41LwxnmbmIebDHbOXbNIBefzGd6fRnP
A0ZnwMXQ3FwceNe/+04QD+raSeUXrDx0kLqd2uzJgyy9hgzDrDwctFs4epLN
g1XVtRF62vnYvrSbMtbigXXpVV9xUj5qaC025U1zIXU215qhKsHPhveYJv7G
hdKbSSyFWAkmHhHa2yRwIeSqjptoWoIiNYZw5ggXHNs+Rhuek6JdLPOisy4X
BgOFJWajUiRSXNd8O0hAb3dxn+OYFMti0pp5bwloP9So6j0uxSWqJ/HSvwTU
2UycIaekmHSMZBa+IUCkfkBHtiDFO/pZ6+f7CPApn4zdyqSx/8GQblYXAfWr
3TkbdtPIeXl574tmAqqjTsZsN6VR2PpsYqiJgJLxsKJ9bBoHanQeLDQSIJaL
1/pa0MjPLbIwbCDgguxTTZodjcnBnTaCOgLMfHKNmZ40Ni0au6yrIsCktdxb
9xCN6uM8ZaNKAvSxLdrEm0af/sqmfRUEaOyYkbv6rvwbDrqfLCdgdNHjWvwJ
GpVSznkV3SfgDd+/Ov17Gg/E/L7uUQkB8sHzw/n+NKZQKs87igloepbn+CiQ
xo3HRJylIgJqXSp4fwfReNp9SGv9SpdVPcl5HUxjoS27y0hGQKHpQMt4KI1T
ey5kWd0jIE8yO73MpdFGv+G4RyEB/wFQq0vo
"]]},
Annotation[#, "Charting`Private`Tag$137319#1"]& ]}, {}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{
FormBox["\"Voltage (V)\"", TraditionalForm],
FormBox["\"Current (A)\"", TraditionalForm]},
AxesOrigin->{0, 0.0036492466049883676`},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
ImageSize->Full,
Method->{"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0, 2788.}, {0.003715846994535519, 0.005047854785478547}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{
3.765498951261845*^9, 3.765499096271295*^9, {3.765499149042663*^9,
3.765499170372085*^9}, 3.765567978646985*^9, 3.765569304357066*^9,
3.7655702025897837`*^9, {3.7655710311783*^9, 3.765571053397928*^9},
3.765571091413966*^9, 3.765571209733469*^9, 3.765571280286643*^9,
3.765571352059122*^9, 3.765571418638863*^9, {3.76558448352351*^9,
3.765584518278372*^9}, 3.765584704138588*^9, 3.765585278003827*^9,
3.765585457683865*^9, 3.765585514812145*^9, 3.765585592964299*^9,
3.7655856722847013`*^9, 3.765585730562642*^9, 3.765588052448309*^9, {
3.7656415976361713`*^9, 3.765641603961117*^9}, 3.765641720517993*^9,
3.7657236420249557`*^9},
CellLabel->
"Out[2101]=",ExpressionUUID->"04cbc3b3-fc06-489b-90fd-898696ab18f3"]
}, Open ]],
Cell[TextData[{
"Our theoretical values are ",
Cell[BoxData[
FormBox[
SubscriptBox["V", "th"], TraditionalForm]],
FormatType->"TraditionalForm",ExpressionUUID->
"f384c233-1b16-49d7-ad7a-53061bc4709f"],
" = ",
Cell[BoxData[
FormBox[
SubscriptBox["V", "0"], TraditionalForm]],
FormatType->"TraditionalForm",ExpressionUUID->
"01e1ab6a-d541-4db7-a496-793be3ed71c3"],
" = 10.2 V \[PlusMinus] 0.2 V and ",
Cell[BoxData[
FormBox[
SubscriptBox["R", "th"], TraditionalForm]],
FormatType->"TraditionalForm",ExpressionUUID->
"f0ed8211-c422-4aa4-8645-a479361f7595"],
" = ",
Cell[BoxData[
FormBox[
SubscriptBox["R", "0"], TraditionalForm]],
FormatType->"TraditionalForm",ExpressionUUID->
"72ca89e7-161a-4de9-b9c5-ad21871680aa"],
" = 2 k\[CapitalOmega] \[PlusMinus] 0.02 k\[CapitalOmega]. Our experimental \
value for the Thevenin voltage came out to ",
Cell[BoxData[
FormBox[
SubscriptBox["V", "th"], TraditionalForm]],
FormatType->"TraditionalForm",ExpressionUUID->
"653be285-39d8-483e-9400-d2f7bc0aeaa0"],
" = 10.17 V \[PlusMinus] 0.01 V and for the Thevenin resistance came out to ",
Cell[BoxData[
FormBox[
SubscriptBox["R", "th"], TraditionalForm]],
FormatType->"TraditionalForm",ExpressionUUID->
"238d7089-4cf2-4eb3-a19a-3bd33281fd73"],
" = 2.02 k\[CapitalOmega] \[PlusMinus] 0.02 k\[CapitalOmega], both of which \
are within theoretical bounds of their theoretical counterparts."
}], "Text",
CellChangeTimes->{{3.765584824008786*^9, 3.7655851024342623`*^9}, {
3.765585304966105*^9, 3.7655853592209806`*^9}, {3.765585745335685*^9,
3.765585748118739*^9}},ExpressionUUID->"2d412118-89dd-4a51-880d-\
5577db99b099"]
}, Open ]],
Cell[CellGroupData[{
Cell["Section B", "Section",
CellChangeTimes->{{3.7655859190722723`*^9,
3.765585922108307*^9}},ExpressionUUID->"b5184ecf-dfab-4f80-a255-\
5c937edfabb3"],
Cell["\<\
In Section B, we proceed with the same experiment but with a more complicated \
circuit. The circuit (seen below) is attached with our observer over \
terminals A and B and then over B and C. We will again be trying to verify \
that our experimental values for Thevenin equivalent voltages and resitances \
come out the same as theory.\
\>", "Text",
CellChangeTimes->{{3.76558592421028*^9, 3.76558595453518*^9}, {
3.765586075500452*^9, 3.765586088264825*^9}, {3.765586498767879*^9,
3.765586519569051*^9}, {3.765586606358053*^9, 3.7655866418876677`*^9},
3.76558668561839*^9},ExpressionUUID->"9b703778-d4b6-4b1c-9fad-\
f36721289fa7"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Import", "[", "\"\</home/ctbus/Pictures/Selection_005.png\>\"",
"]"}]], "Input",
CellChangeTimes->{{3.765586479044853*^9, 3.765586486949874*^9}},
CellLabel->
"In[2102]:=",ExpressionUUID->"ee23b44a-0e6d-4cbc-bb08-3e52186cb0ad"],
Cell[BoxData[
GraphicsBox[
TagBox[RasterBox[CompressedData["
1:eJzt3f9TG1e+8Pm7u7/sj/sv7H+xZe8kQ5kYmBtQwpdKEJlHD7ORuRu0N5Ry
BysZRg6JbjxWTIydQJhx7NyJk3XIFktVPPLwJXHhKQY/YyoeoLh2DaHm2i4K
+MGqeh5UtQ/6iT3qIzVCEqLVaumcFu9PdaWCLF6c0+rTH53Tp0//r794s/XM
//gP//APb/3P4j+t3WfrgsHut9v+F/FDxz+/9X/2/LP/9aZ//hd/jz/4v/3i
fxIv/vA//MM/RMX7U/+/Z8TGxsaeQwEFBQUFBQUFBQUFBQUFBQUFBQUFBQUF
BQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUF
BQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUF
BQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUF5SC1YcTKysqGQwEFBQUF
BQVVZjiY6KGgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCg
oKCgoKDcS21ubUeiQ76e3pP1TcdwExUX1Rc7ocq7HQoKCgoK6jAqNjXT4GlX
niKVb2IniF1Rtd0OBQUFBQV1GPXD0rJITKc9bSIxra2vO/WH3BWi1zw+MSl2
gtgVYofIF93yCUJBQUFB1R7V1uUTKenY5uXskF9UxA6RP7rlE4SCgoKCqjFK
5qPeYL9TvttD7Aqz++yKTxAKCgoKqvao8YlJkYw++/0Np3y3x/DImNghYrfs
ueQThIKCgoKqPUrkZbJzdmTvEFd8glBQUFBQtUeRnXOC7AwFBQUFpZwiO+cE
2RkKCgoKSjlFds4JsjMUFBQUlHKK7JwTZGcoKCgoKOVUoez8dLTr0NW06sLL
u04VJTuS69GOlB+4n3QeSS6Hmw7WwuMPRMbvPinwt8jOUFBQUFDKqULZeXsy
6G3wtKe2JjOdGT96vJ2XHlUkO4s/GukPBAdGf6xkdm46UKmT9d7wne0cg+wM
BQUFBaWcKj6yvbs0WJfKYr2zcaf+fiXjqOzsv5OQL+w+WRjukQm6d3zrwHvJ
zlBQUFBQyilb2Tl+7+agr8t4aobHH7q5vCNfTj4Ke1Id0uj9uUh3y8mmgXuJ
zCtLy+MhX4pq8oentnfjC8MBb+rXO/pHl4yMmZ1YTWdpPRbtbUgVoN0Xnds0
U25yPXapv012gT3+4NXFZ5nXLWbnVCQWQsaLzZfWs0cDyM5QUFBQUMqp0rNz
4kHUSKyevsjIlaBxhbrz5tNUgks+iniMfNfVUtfV6w+OrSbMV3y+8FCoW3ZX
fYFub+pHeXXbM7SazM3O6d/q9raFhqKR3jr5kMdbchQ6PhtqSf1i10D00mBn
fboAqX8pKTvvJR+EDad7cvOQHeKKTxAKCgoKqvaokrNzfMZndGYjD5PyR3+q
Rzz4ICvDnuzJ5LvMK3XhxVT/eivmkw9qjBjd7SfjRm71jT7Jyc4ZJzhndIoT
92QaDcylfiuxGO72Nnf1ySvUj6/69jNsadl57/FN43c7rqxlvZ3sDAUFBQWl
nCo1O+/eHzD6v32xJ/Fn8fizrWUjIXqjP+5nVd9U5t2ZV9JpMbksB5MD8/LH
xaCZ6AtlZzOZbk748zu5hpDcnOo1+tHXH++RnUuI333+Rarup9Q/U5uN7Zhu
p5pOnGoc+e1n5TdnGbqdZKDKpErNzjt3+goeadlZdT855rySvqDcElqSP8pk
fWh2Np1nt4wUnM7OidWbgz7PwQLYyc6Je3KEvCf27JAd4shu3zBiZWVlw6Fw
hPqXX4VFNU/UN6o/R7GxHctNtr633h4ovznL0O0kA1Um9dHHIydL7DvLV0bv
LNydN7fF1Xih5FiB7LxzXxbJF7m1+ODho3tyZNtGdo7PBYwX2+Q160zI7Cx2
i1O73czRZWT4A+EIJat56ZPR8ikZulUQCkpzijYIVZwq/bqzvHbsy9yYHH9w
Z252fnkzWZ3snFwbMeakdY2n0nHqkrQxdbxjbK1gAdLFyLujamsxfUdV00DO
zWLHZGSbMwMUlFqKNghVnLI/Z7upNxQdCgWM5Nh9vXByrEDf+Vl6aL09EB2L
hPwN3X3NqR+9wZG5zZJXI/FF5nNv5CY72wvdKggFpTlFG4QqTtm633n73tWB
zvSVX68vMrkqu6TVue6c3J5N3wTd0hkeX43H70bk5K6hBwmrK3mebPL6wtdn
j/FKnpwZoKDUUrRBqOLU+MRkkex8DGN4ZEzsELFb9lzyCdoLzgxQUGop2iBU
ceqHpWVxhPQG+53y3R5iV4gdInbLnks+QXvBmQEKSi1FG4Q6kmr1pkaG19bX
nfoT7g35XUXsEPmjWz5BG8GZAQpKLUUbhDqSkimpwdN+e3r22Oboza3t8YlJ
sRPMjvOeez5BG8GZAQpKLUUbhLJCxaZmTnvalN+er3wTO0HsiqrtdoUUZwYo
KLUUbRDKIiU6j/0D537yws+Up0glm+/MG5ELF8VOqPJuV0VxZoCCUkvRBqEs
UjuJhK/HuHHplCOrOzaeyFrDWfRJh0fGigybu2tf1QDFmQEKSi1FG4SySEWi
QzI1l7/2crZwNjx4d35BhwpCZQdnBigotRRtEMoKFZuaMfu8ttPxiaxXWr2+
8YnJnIFihRWEygnODFBQainaINSR1Nr6+ukW21PCDvS1T3vaIhcu2pj47ZZ9
VTMUZwYoKLUUbRCqOFXO5eacEezs2c5llqqcgLISnBmgoNRStEGo4lRJl5sz
79l/Z6vXJ44x6yPYFksFVWmKMwMUlFqKNghVhLJ+ufmETM2ZadhyBHv6u+8r
USqoKlCcGaCg1FK0QajDKOuXm7O71b3BfpHTdxKJCpUKqjoUZwYoKLUUbRCq
IGXtcvMRI9g6VxCqeHBmgIJSS9EGoQpSh19ubswewRZb5MJFc93pSpcKqmoU
ZwYoKLUUbRAqnyp4ufnEwXujfGfeMEewq1MqqGpSnBmgoNRS5yK/EW3wlwPn
yqdk6FZBqFJjfmEh53Jz9pKbrV7f8MiYxTnYelYQykqQnaGgFFLRS1fqm18W
bbC+ufXi5U80KRWUQkr0hb2/OJM/B1uOYFtZcrMSpYKqPkV2hoJSRQ1dGX2+
sdk894r/H716XXmpoNRS6cvNWZuVEexKlwqq+hTZGQpKFfVCS2vufTHOPHuI
rRa2Ix8aVYVD9JhQG0asrKxsOBSOUCIvi8Pggw+Hyqdk6FZBKChtqfoXX845
IZOd2cT2c/8/TX77Bx0O0WNCOZjoHaToO0NBqaJGfnftuYYXzXPy843Nn372
ufJSQUFB6UCRnaGgFFIXL3/yfOOLRmp+0almqFUFoaCg7AXZGQpKLfXa6z2i
Db76n/+P8ikZulUQCgrKRpCdoaDUUr3BX4o2+HrgzfIpGbpVEAoKykaQnaGg
1FJkZygoqPwgO0NBqaXIzlBQUPlBdoaCUkuRnaGgoPKD7AwFpZYiO0NBQeUH
2RkKSi1FdoaCgsoPsjMUlFqK7AwFBZUfZGcoKLUU2RkKCio/yM5QUGopsjMU
FFR+kJ2hoNRSZGcoKKj8IDtDQamlyM5QUFD5QXaGglJLkZ2hoKDyg+wMBaWW
IjtDQUHlB9kZCkotRXaGgoLKD7IzFJRaiuwMBQWVH2RnKCi1FNkZCgoqP8jO
UFBqKbIzFBRUfpCdoaAUUrenZ0972kQbbP/5f3akSHuaVRAKCspekJ2hoKpP
7SQS1774sq3LJ1rfifpG8d//65dnlZcKCgpKH4rsDAVVTWptfT0SHRKNTm6+
M2+cDQ/SBqGgoHKC7AwFVR3q9vRs4K1+My9HLlz8YWl5jzYIBaWa2jBiZWVl
w6FwhBLnBHFm+ODDofIpGbpVEApKLfW3tbXhkU9fevU1mZTrm1/+6OORvy4t
m2+4Fftj40sdN8f/n2qWCgoKygwHE72DFN/boaAqR8WmZszOsuwv61AqKCgo
/SmyMxRURanUheYLF80E3dbluz09u5NIqC0VFBSU5hTZGQqqCpRIx6KttXp9
Mkc3eNovj/52c2tbbamgoKC0pcjOUFDVpGJTM73B/blhofB7cm5YzVQQCgqK
7AwF5VIqf7j7q6+/yR/urnKpoKCg9KHIzlBQqqgjh7uVlAoKCkoHiuwMBaWc
ik3NvN77Zv5wt9pSQUFBKaTIzlBQmlAWZ3dXuVRQUFBKKLIzFJRWVPnD3ZpX
EAoKykqQnaGg9KQOm92ttlRQUFDVocjOUFAaUqIHPT4xKR9iJbbTnrbhkbEC
Pejkcrhpfy2yzPZKZ2hs9knywDvji8OBltS/Ng0+SOYyFktVTkBBQZUUZGco
KK0okYIj0aEGT7tMta1en+hEH3r12czOTe3iV4wtk6Ob+mNb6Tdt3rnSaeZu
sjMUlBsosjMUlCbUn/68kP0Qq7PhwaOHsjPZ2X9nP33/feHf/HJe2dWnxnse
hUXK7hgYvdpfR3aGgnIJRXaGglJLyUFs8yFWhw5iF4xC2XljY+1uwEjxwcWd
1HueTt6ce5zc210aJDtDQbmFIjtDQamiUrdQWR/ELhiFs/O/x3pSL9aFl3ez
3kt2hoJyEUV2hoKqPnV7ejZnEHv6u+/tQAWyc+IvE+83p9iW4PyBRE92hoJy
EUV2hoKqGiX6xde++LLgTGybpSo8Z9u4UTo8s3nwvWRnKCgXUWRnKKgqUHIQ
20yd+YPY5Wbn9JztFuk3X1reyXsv2RkKykUU2RkKqqJU/iB2wZnYZWbnzMh2
cnXE6Jh7Bu/mXb4mO0NBuYgiO0NBVY4SHeTTnjYzNYvu82GTsR3Kznt7ieV3
2oyR7chiTveZ7AwF5SKK7AwFVWlK5GjfmTeyc3R+99mx7Ly397c/vt2Q+kPt
4fvGi8n10VB/INjv75bj3i2dgdSP0fn4kbyrdzsUlKspsjMUVHUokZGzH0Hl
6+m9PT1bbqkOuaNqNmQk4o6hB+Ll5GKg0LSxzomjb6mugd0OBeVSiuwMBVVN
anNrWzQ6c7i7wdN+7YsvxYs1U0EoKCiyMxSUe6mc4e533n3f4iOoKloqKKhj
SG0YsbKysuFQOEKJvCzODB98OFQ+JUO3CkJB6UxNf/f9O+feM3O09xdnvvr6
G+WlgoI6VpSDid5Bir4zFJRyanNr+6OPR/KHu9WWCgoKSiFFdoaC0oeyMru7
+qWCgoKqPkV2hoLSjSo+u1tVqaCgoKpJkZ2hoPSkNre2s3N0g6dd9KyVlwoK
Cqo6FNkZCkpDSnSfQ+H92WK9wf678wuH/nJ8cThg3OBsrANWoFTJ9WhHygnc
P2yZsPjqrbFgj6+uPr1qd2fw/I35p393w76CgqpJiuwMBaUPtZNI3J6ezX6I
leg+F50elty8c6XTXGPEXnZOrt8ItBR80NVLv7r1zNEKQpVDpYZTokO+nt6C
H1bNb6Li+WvhuusTLCnIzlBQOlB/XVq+PPrbBk+7PBG1en3jE5PZD7EqHMlH
YU/TyY6B0av95hraJWbn5Jp8cEZ9S+Dm4qb898R6LOKVJQncOXrBTyuh5253
ERWbmjEPj+O85VzicdEnWGqQnaGg1FKlDWLnRPLp5M25x8kDT7g4MjvvPpn0
p/6WN3w/nloL1GOc9HKempF8OtplFKkntpnL2Qnddru7KHGQnDTGUkRiWltf
d+oPuStEr1l8ZZU3Hpr3MrjlE7QRZGcoKCWU6BeLU405iF3f/PJRg9jFooTs
nFiOGmnXP/F0V/zTVswYGG8JLeV2qx9fNcpWyjOtioQmu92llDxOjm1ezg75
RUXsEPmjWz5BG0F2hoKqMiWvHuYMYv9tba2ckljNzvPrsWDqEnNzNNNT3po0
srN3+MfcHPxsqpfsrAMl81FvsN8p3+0hdoXZfXbFJ2gvyM5QUFWj/vTnhcBb
/QUHscsslcXs3NBjXE32DK2aCTe5GEw95aoleD/nGnfmenTX+ONySpaJ2vgE
lVDiy5v4IMS52inf7TE8MiZ2iNgtey75BO0F2RkKqtJUziB2wZnY1cnOma09
tJ+LE/fCqd50XXDuwPTs5CP5K21Xn5ZTMDNc/QmqpeRZmuxsRvYOccUnaC/I
zlBQlaMKDmIXnIldnezcdmlhdcIYr+64st993poJGA+J9l1dTg93J5/GwkaZ
X724etS0cYvh0k9QB4rsnBNkZ3uhWwWhoBRSPywtnw0Pmp3WwFv9h63JWZ3s
nJoVlukUd97c7xTvPpkJG1PFGkIzm4nliPz/wPXpNVfu9hqjyM45QXa2F7pV
EApKOSV60MMjY+YjqNq6fNe++DKnB22zVMn10VB/INjv75bLibR0Bvr9gTej
8/Gct2XfUbUzb6Ty+r5YXKT1820d3ubU1iL71GtbMz55Y2mH92dtrzR39d14
YqdoOeHqT1AtRXbOCbKzvdCtglBQmlAiHcemZlq9PrMrHYkOmffI2M3Oi4FC
KzZ0Thy8Myt3NZLt8R4j/4YXNuf7DvxuVnbObAWmc9uIGvgEVVFk55wgO9sL
3SoIBaUbVXC4W3mpoLSlCmXnzFoxhba68PKuU0XJjqNXay8bST69e/W8vyuz
JJrHH4jGHuQtVkd2the6VRAKSk8qZ7j7pVdfyx/urn6poDSkCmXn7cmgt8HT
ntqaMklZ/ujxdl56VJHsLP5opD8QHBgtZyylSHZOLEe7C33f8AzEtg68kexs