-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathpcair.py
executable file
·207 lines (155 loc) · 8.55 KB
/
pcair.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
#! /usr/bin/env python3
"""PC-AiR"""
import TopmedPipeline
import sys
import os
from argparse import ArgumentParser
from copy import deepcopy
description = """
PCA with the following steps:
1) Find unrelated sample set
2) (optional) Select SNPs with LD pruning using unrelated samples
3) PCA (using unrelated set, then project relatives)
4) SNV-PC correlation
"""
parser = ArgumentParser(description=description)
parser.add_argument("config_file", help="configuration file")
parser.add_argument("--ld_pruning", action="store_true", default=False,
help="run LD pruning of variants prior to PCA")
parser.add_argument("-c", "--chromosomes", default="1-22",
help="range of chromosomes [default %(default)s]")
parser.add_argument("--cluster_type", default="UW_Cluster",
help="type of compute cluster environment [default %(default)s]")
parser.add_argument("--cluster_file", default=None,
help="json file containing options to pass to the cluster")
parser.add_argument("--verbose", action="store_true", default=False,
help="enable verbose output to help debug")
parser.add_argument("-n", "--ncores", default="1-8",
help="number of cores to use; either a number (e.g, 1) or a range of numbers (e.g., 1-4) [default %(default)s]")
parser.add_argument("-e", "--email", default=None,
help="email address for job reporting")
parser.add_argument("--print_only", action="store_true", default=False,
help="print qsub commands without submitting")
parser.add_argument("--version", action="version",
version="TopmedPipeline "+TopmedPipeline.__version__,
help="show the version number and exit")
args = parser.parse_args()
configfile = args.config_file
ld = args.ld_pruning
chromosomes = args.chromosomes
cluster_file = args.cluster_file
cluster_type = args.cluster_type
ncores = args.ncores
email = args.email
print_only = args.print_only
verbose = args.verbose
version = "--version " + TopmedPipeline.__version__
cluster = TopmedPipeline.ClusterFactory.createCluster(cluster_type, cluster_file, verbose)
pipeline = cluster.getPipelinePath()
submitPath = cluster.getSubmitPath()
driver = os.path.join(submitPath, "runRscript.sh")
configdict = TopmedPipeline.readConfig(configfile)
configdict = TopmedPipeline.directorySetup(configdict, subdirs=["config", "data", "log", "plots"])
# analysis init
cluster.analysisInit(print_only=print_only)
job = "find_unrelated"
rscript = os.path.join(pipeline, "R", job + ".R")
config = deepcopy(configdict)
config["out_related_file"] = configdict["data_prefix"] + "_related.RData"
config["out_unrelated_file"] = configdict["data_prefix"] + "_unrelated.RData"
configfile = configdict["config_prefix"] + "_" + job + ".config"
TopmedPipeline.writeConfig(config, configfile)
jobid = cluster.submitJob(job_name=job, cmd=driver, args=[rscript, configfile, version], email=email, print_only=print_only)
if ld:
job = "ld_pruning"
rscript = os.path.join(pipeline, "R", job + ".R")
config = deepcopy(configdict)
config["sample_include_file"] = configdict["data_prefix"] + "_unrelated.RData"
config["out_file"] = configdict["data_prefix"] + "_pruned_variants_chr .RData"
configfile = configdict["config_prefix"] + "_" + job + ".config"
TopmedPipeline.writeConfig(config, configfile)
jobid = cluster.submitJob(job_name=job, cmd=driver, args=["-c", rscript, configfile, version], holdid=[jobid], array_range=chromosomes, email=email, print_only=print_only)
job = "combine_variants"
rscript = os.path.join(pipeline, "R", job + ".R")
config = dict()
config["chromosomes"] = TopmedPipeline.parseChromosomes(chromosomes)
config["in_file"] = configdict["data_prefix"] + "_pruned_variants_chr .RData"
config["out_file"] = configdict["data_prefix"] + "_pruned_variants.RData"
configfile = configdict["config_prefix"] + "_" + job + ".config"
TopmedPipeline.writeConfig(config, configfile)
jobid = cluster.submitJob(job_name=job, cmd=driver, args=[rscript, configfile, version], holdid=[jobid], email=email, print_only=print_only)
## could split pca_byrel script into two parts: pca on unrelated, then project relatives
## could start pca_corr once first part is done
## but probably not worth it
job = "pca_byrel"
rscript = os.path.join(pipeline, "R", job + ".R")
config = deepcopy(configdict)
config["related_file"] = configdict["data_prefix"] + "_related.RData"
config["unrelated_file"] = configdict["data_prefix"] + "_unrelated.RData"
if ld:
config["variant_include_file"] = configdict["data_prefix"] + "_pruned_variants.RData"
config["out_file"] = configdict["data_prefix"] + "_pcair.RData"
config["out_file_unrel"] = configdict["data_prefix"] + "_pcair_unrel.RData"
configfile = configdict["config_prefix"] + "_" + job + ".config"
TopmedPipeline.writeConfig(config, configfile)
jobid_pca = cluster.submitJob(job_name=job, cmd=driver, args=[rscript, configfile, version], holdid=[jobid], request_cores=ncores, email=email, print_only=print_only)
## config needs both sample and subject annotation (or merge them ahead of running pipeline)
job = "pca_plots"
jobsPlots = []
rscript = os.path.join(pipeline, "R", job + ".R")
config = deepcopy(configdict)
config["pca_file"] = configdict["data_prefix"] + "_pcair.RData"
config["out_file_scree"] = configdict["plots_prefix"] + "_pca_scree.pdf"
config["out_file_pc12"] = configdict["plots_prefix"] + "_pca_pc12.pdf"
config["out_file_parcoord"] = configdict["plots_prefix"] + "_pca_parcoord.pdf"
config["out_file_pairs"] = configdict["plots_prefix"] + "_pca_pairs.png"
configfile = configdict["config_prefix"] + "_" + job + ".config"
TopmedPipeline.writeConfig(config, configfile)
jobid = cluster.submitJob(job_name=job, cmd=driver, args=[rscript, configfile, version], holdid=[jobid_pca], email=email, print_only=print_only)
jobsPlots.append(jobid)
## want to run pca_corr on more variants than in LD pruned set, but not all variants
## select a random set of ~10% of variants, where numbers are proportional by chromosome
## will need to include full GDS files in config as well as LD pruned. could be per-chromosome.
job = "pca_corr_vars"
rscript = os.path.join(pipeline, "R", job + ".R")
config = deepcopy(configdict)
build = configdict.setdefault("genome_build", "hg38")
config["segment_file"] = os.path.join(pipeline, "segments_" + build + ".txt")
config["gds_file"] = configdict["full_gds_file"]
config["pca_file"] = configdict["data_prefix"] + "_pcair.RData"
if ld:
config["variant_include_file"] = configdict["data_prefix"] + "_pruned_variants.RData"
config["out_file"] = configdict["data_prefix"] + "_pcair_corr_variants_chr .RData"
configfile = configdict["config_prefix"] + "_" + job + ".config"
TopmedPipeline.writeConfig(config, configfile)
jobid = cluster.submitJob(job_name=job, cmd=driver, args=["-c", rscript, configfile, version], holdid=[jobid_pca], array_range=chromosomes, email=email, print_only=print_only)
job = "pca_corr"
rscript = os.path.join(pipeline, "R", job + ".R")
config = deepcopy(configdict)
config["gds_file"] = configdict["full_gds_file"]
config["pca_file"] = configdict["data_prefix"] + "_pcair_unrel.RData"
config["variant_include_file"] = configdict["data_prefix"] + "_pcair_corr_variants_chr .RData"
config["out_file"] = configdict["data_prefix"] + "_pcair_corr_chr .gds"
configfile = configdict["config_prefix"] + "_" + job + ".config"
TopmedPipeline.writeConfig(config, configfile)
# single core only
jobid = cluster.submitJob(job_name=job, cmd=driver, args=["-c", rscript, configfile, version], holdid=[jobid], array_range=chromosomes, email=email, print_only=print_only)
job = "pca_corr_plots"
rscript = os.path.join(pipeline, "R", job + ".R")
config = deepcopy(configdict)
config["chromosomes"] = TopmedPipeline.parseChromosomes(chromosomes)
config["corr_file"] = configdict["data_prefix"] + "_pcair_corr_chr .gds"
config["out_prefix"] = configdict["plots_prefix"] + "_pcair_corr"
configfile = configdict["config_prefix"] + "_" + job + ".config"
TopmedPipeline.writeConfig(config, configfile)
jobid = cluster.submitJob(job_name=job, cmd=driver, args=[rscript, configfile, version], holdid=[jobid], email=email, print_only=print_only)
jobsPlots.append(jobid)
# post analysis
bname = "post_analysis"
job = "pcair" + "_" + bname
jobpy = bname + ".py"
pcmd=os.path.join(submitPath, jobpy)
argList = ["-a", cluster.getAnalysisName(), "-l", cluster.getAnalysisLog(),
"-s", cluster.getAnalysisStartSec()]
cluster.submitJob(binary=True, job_name=job, cmd=pcmd, args=argList,
holdid=[jobid], print_only=print_only)