This repository has been archived by the owner on Jun 2, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy path2a_process_nhd_downscaling.R
184 lines (169 loc) · 8.07 KB
/
2a_process_nhd_downscaling.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
source("2a_process_nhd_downscaling/src/subset_closest_nhd.R")
source("2a_process_nhd_downscaling/src/munge_split_temp_dat.R")
source("2a_process_nhd_downscaling/src/write_data.R")
source("2a_process_nhd_downscaling/src/estimate_mean_width.R")
source("2a_process_nhd_downscaling/src/combine_nhd_input_drivers.R")
p2a_targets_list <- list(
# Subset NHDv2 reaches that overlap the NHM network to only include those
# that have a corresponding catchment (and meteorological data)
tar_target(
p2a_dendritic_nhd_reaches_along_NHM_w_cats,
p1_dendritic_nhd_reaches_along_NHM %>%
filter(areasqkm > 0)
),
# Match temperature monitoring locations to "mainstem" NHDPlusv2 flowline
# reaches, i.e. those that NHD reaches that intersect the NHM river network.
# Note that this site-to-segment matching procedure emulates the process
# used in delaware-model-prep for modeling water temperature in the Delaware
# River Basin. Here, match each site to an NHDPlusv2 reach, preferring reaches
# for which the downstream vertex (endpoint) is close to the site point.
tar_target(
p2a_drb_temp_sites_w_segs,
subset_closest_nhd(nhd_lines = p2a_dendritic_nhd_reaches_along_NHM_w_cats,
sites = p1_drb_temp_sites_sf)
),
# Match temperature observational time series to "mainstem" NHDPlusv2 flowline
# reaches by COMID. Rename columns to match the column names used in the aggregated
# temps data file in the temperature forecasting data release.
tar_target(
p2a_drb_temp_obs_w_segs,
p1_drb_temp_obs %>%
left_join(y = p2a_drb_temp_sites_w_segs[,c("site_id","comid")], by = "site_id")
),
# Resolve duplicate temperature observations and summarize the temperature data
# to return one value for each COMID-date. By setting prioritize_nwis_sites to
# FALSE we include all observations from non-NWIS sites in the summarized data.
tar_target(
p2a_drb_temp_obs_by_comid,
p2a_drb_temp_obs_w_segs %>%
munge_split_temp_dat(., prioritize_nwis_sites = FALSE) %>%
rename(COMID = comid)
),
# Save temperature observations mapped to NHDPlusv2 COMIDs as a zarr data store
tar_target(
p2a_drb_temp_obs_w_segs_zarr,
write_df_to_zarr(p2a_drb_temp_obs_by_comid,
index_cols = c("date", "COMID"),
"2a_process_nhd_downscaling/out/drb_temp_observations_nhdv2.zarr"),
format = "file"
),
# Estimate mean width for each "mainstem" NHDv2 reach.
# Note that one NHM segment, segidnat 1721 (subsegid 287_1) is not included
# in the dendritic nhd reaches w cats data frame because the only COMID that
# intersects the segment (COMID 4188275) does not have an NHD catchment area.
# So in addition to estimating width for the COMIDs represented in
# p2a_dendritic_nhd_reaches_along_NHM_w_cats, we also want to estimate width
# for COMID 4188275.
tar_target(
p2a_nhd_mainstem_reaches_w_width,
{
nhd_lines <- bind_rows(p2a_dendritic_nhd_reaches_along_NHM_w_cats,
filter(p1_dendritic_nhd_reaches_along_NHM,
comid == "4188275"))
estimate_mean_width(nhd_lines,
estimation_method = 'nwis',
network_pos_variable = 'arbolate_sum',
ref_gages = p1_ref_gages_sf)
}
),
# Pull static segment attributes from PRMS SNTemp model driver data
tar_target(
p2a_static_inputs_prms,
p1_sntemp_input_output %>%
group_by(seg_id_nat) %>%
summarize(seg_elev = unique(seg_elev),
seg_slope = unique(seg_slope),
seg_width = mean(seg_width, na.rm = TRUE)) %>%
mutate(seg_id_nat = as.character(seg_id_nat)) %>%
select(seg_id_nat, seg_elev, seg_slope, seg_width)
),
# Pull dynamic segment attributes from PRMS SNTemp model driver data
tar_target(
p2a_dynamic_inputs_prms,
p1_sntemp_input_output %>%
mutate(seg_id_nat = as.character(seg_id_nat)) %>%
select(seg_id_nat, date, seginc_potet)
),
# Track the .py script as a file target so that downstream targets rebuild
# if the .py script is edited. We do this because targets does not seem to
# automatically detect changes in functions within .py scripts.
tar_target(
p2a_py_file,
"2a_process_nhd_downscaling/src/subset_nc_to_comid.py",
format = "file"
),
# Subset the DRB meteorological data to only include the NHDPlusv2 catchments
# (COMID) that intersect the NHM segments. `subset_nc_to_comid()` originally
# developed by Jeff Sadler as part of the PGDL-DO project:
# https://github.com/USGS-R/drb-do-ml/blob/main/2_process/src/subset_nc_to_comid.py
# The resulting target is ~0.6 GB.
tar_target(
p2a_met_data_nhd_mainstem_reaches,
{
reticulate::source_python(p2a_py_file)
subset_nc_to_comids(p1_drb_nhd_gridmet,
p2a_dendritic_nhd_reaches_along_NHM_w_cats$comid) %>%
as_tibble() %>%
relocate(c(COMID,time), .before = "tmmx") %>%
# format dates
mutate(date = lubridate::as_date(time, tz = "UTC")) %>%
# convert gridmet precip units from inches to meters, and temperature
# units from degrees Farenheit to degrees Celsius.
# Note that we average the daily minimum and maximum temperatures from
# gridmet and call that "seg_tave_air", which we assume corresponds
# approximately to the PRMS-SNTemp variable with the same name.
mutate(tmmean = rowMeans(select(., c(tmmn,tmmx))),
seg_tave_air = ((tmmean - 32) * (5/9)),
seg_rain = pr * 0.0254) %>%
# rename gridmet columns to conform to PRMS-SNTemp names used in river-dl
select(COMID, date, seg_tave_air, srad, seg_rain) %>%
rename(seginc_swrad = srad)
}
),
# Compile river-dl static input drivers at NHDv2 resolution, including river
# width (m) slope (unitless), and min/max elevation (m). Note that these input
# drivers represent "mainstem" NHDv2 reaches only (i.e., those reaches that
# intersect the NHM fabric). Some of the columns in p2a_static_input_drivers_nhd
# are meant to facilitate comparison/EDA between segment attributes at the NHM and
# NHDPlusv2 scales (i.e., seg_slope ~ slope_len_wtd_mean; seg_elev ~ seg_elev_min;
# seg_width ~ seg_width_max).
tar_target(
p2a_static_inputs_nhd,
prepare_nhd_static_inputs(nhd_flowlines = p2a_nhd_mainstem_reaches_w_width,
prms_inputs = p2a_static_inputs_prms,
nhd_nhm_xwalk = p1_drb_comids_all_tribs)
),
# Format NHD-scale static input drivers
tar_target(
p2a_static_inputs_nhd_formatted,
p2a_static_inputs_nhd %>%
select(COMID, seg_id_nat, subsegid,
est_width_m, min_elev_m, slope) %>%
rename(seg_width_empirical = est_width_m,
seg_elev = min_elev_m,
seg_slope = slope,
seg_id_nat = seg_id_nat)
),
# Combine NHD-scale static input drivers with dynamic climate drivers.
# Note that there is currently no pot ET analog variable at the NHD-scale,
# so we are using seginc_potet from PRMS-SNTemp and assuming that there is
# not much intra-segment variation in potential ET among NHD reaches that
# contribute to a given NHM segment. The resulting target contains 15,800
# days of climate data across each of 3,173 COMIDs = 50,133,400 total rows.
tar_target(
p2a_input_drivers_nhd,
combine_nhd_input_drivers(nhd_static_inputs = p2a_static_inputs_nhd_formatted,
climate_inputs = p2a_met_data_nhd_mainstem_reaches,
prms_dynamic_inputs = p2a_dynamic_inputs_prms,
earliest_date = "1979-01-01",
latest_date = "2022-04-04")
),
# Save river-dl input drivers at NHDv2 resolution as a zarr data store
tar_target(
p2a_input_drivers_nhd_zarr,
write_df_to_zarr(p2a_input_drivers_nhd,
index_cols = c("date", "COMID"),
"2a_process_nhd_downscaling/out/nhdv2_inputs_io.zarr"),
format = "file"
)
)