forked from yeephycho/tensorflow-face-detection
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathexport_inference_video_face.py
150 lines (116 loc) · 5.07 KB
/
export_inference_video_face.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
#!/usr/bin/python
# -*- coding: utf-8 -*-
# pylint: disable=C0103
# pylint: disable=E1101
import sys
import time
import numpy as np
import tensorflow as tf
import cv2
sys.path.append("..")
from utils import label_map_util
from utils import visualization_utils_color as vis_util
import grpc
from tensorflow_serving.apis import predict_pb2
from tensorflow_serving.apis import prediction_service_pb2_grpc
from tensorflow.python.framework import tensor_util
# Path to frozen detection graph. This is the actual model that is used
# for the object detection.
PATH_TO_CKPT = './model/frozen_inference_graph_face.pb'
# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = './protos/face_label_map.pbtxt'
NUM_CLASSES = 2
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(
label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
def load_image_into_numpy_array(image):
(im_width, im_height) = image.size
return np.array(image.getdata()).reshape(
(im_height, im_width, 3)).astype(np.uint8)
cap = cv2.VideoCapture("./media/test.mp4")
out = None
frame_num = 1490
while frame_num:
frame_num -= 1
ret, image = cap.read()
if ret == 0:
break
if out is None:
[h, w] = image.shape[:2]
out = cv2.VideoWriter("./media/test_out.avi", 0, 25.0, (w, h))
image_np = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# the array based representation of the image will be used later in order to prepare the
# result image with boxes and labels on it.
# Expand dimensions since the model expects images to have shape:
# [1, None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0)
# image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# # Each box represents a part of the image where a particular object was detected.
# boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
# # Each score represent how level of confidence for each of the objects.
# # Score is shown on the result image, together with the class label.
# scores = detection_graph.get_tensor_by_name('detection_scores:0')
# classes = detection_graph.get_tensor_by_name('detection_classes:0')
# num_detections = detection_graph.get_tensor_by_name('num_detections:0')
# export_path = "/tmp/face_detector/0"
# print('Exporting trained model to', export_path)
# builder = tf.saved_model.builder.SavedModelBuilder(export_path)
# # Define input tensor
# image_tensor_serving = tf.saved_model.utils.build_tensor_info(image_tensor)
# # Define output tensor
# boxes_serving = tf.saved_model.utils.build_tensor_info(boxes)
# scores_serving = tf.saved_model.utils.build_tensor_info(scores)
# classes_serving = tf.saved_model.utils.build_tensor_info(classes)
# num_detections_serving = tf.saved_model.utils.build_tensor_info(num_detections)
# prediction_signature = (
# tf.saved_model.signature_def_utils.build_signature_def(
# inputs={'image_tensor': image_tensor_serving},
# outputs={'boxes': boxes_serving, 'scores': scores_serving, 'classes': classes_serving, 'num_detections': num_detections_serving},
# method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME))
# builder.add_meta_graph_and_variables(
# sess, [tf.saved_model.tag_constants.SERVING],
# signature_def_map={
# 'predict_output':
# prediction_signature,
# },
# main_op=tf.tables_initializer(),
# strip_default_attrs=True)
# builder.save()
# Actual detection.
start_time = time.time()
channel = grpc.insecure_channel('0.0.0.0:8500')
stub = prediction_service_pb2_grpc.PredictionServiceStub(channel)
request = predict_pb2.PredictRequest()
request.model_spec.name = 'face_detector'
request.model_spec.signature_name = 'predict_output'
request.inputs['image_tensor'].CopyFrom(
tf.contrib.util.make_tensor_proto(image_np_expanded, shape=list(image_np_expanded.shape)))
result = stub.Predict(request, 10.0) # 5 seconds
boxes = tensor_util.MakeNdarray(
result.outputs['boxes'])
scores = tensor_util.MakeNdarray(
result.outputs['scores'])
classes = tensor_util.MakeNdarray(
result.outputs['classes'])
num_detections = tensor_util.MakeNdarray(
result.outputs['num_detections'])
elapsed_time = time.time() - start_time
print('inference time cost: {}'.format(elapsed_time))
#print(boxes.shape, boxes)
# print(scores.shape,scores)
# print(classes.shape,classes)
# print(num_detections)
# Visualization of the results of a detection.
vis_util.visualize_boxes_and_labels_on_image_array(
# image_np,
image,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=4)
out.write(image)
cap.release()
out.release()