forked from NVlabs/FourCastNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
616 lines (515 loc) · 25.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
#BSD 3-Clause License
#
#Copyright (c) 2022, FourCastNet authors
#All rights reserved.
#
#Redistribution and use in source and binary forms, with or without
#modification, are permitted provided that the following conditions are met:
#
#1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
#2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
#3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
#THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
#AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
#IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
#DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
#FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
#DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
#SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
#CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
#OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
#OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
#The code was authored by the following people:
#
#Jaideep Pathak - NVIDIA Corporation
#Shashank Subramanian - NERSC, Lawrence Berkeley National Laboratory
#Peter Harrington - NERSC, Lawrence Berkeley National Laboratory
#Sanjeev Raja - NERSC, Lawrence Berkeley National Laboratory
#Ashesh Chattopadhyay - Rice University
#Morteza Mardani - NVIDIA Corporation
#Thorsten Kurth - NVIDIA Corporation
#David Hall - NVIDIA Corporation
#Zongyi Li - California Institute of Technology, NVIDIA Corporation
#Kamyar Azizzadenesheli - Purdue University
#Pedram Hassanzadeh - Rice University
#Karthik Kashinath - NVIDIA Corporation
#Animashree Anandkumar - California Institute of Technology, NVIDIA Corporation
import os
import time
import numpy as np
import argparse
import h5py
import torch
import cProfile
import re
import torchvision
from torchvision.utils import save_image
import torch.nn as nn
import torch.cuda.amp as amp
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel
import logging
from utils import logging_utils
logging_utils.config_logger()
from utils.YParams import YParams
from utils.data_loader_multifiles import get_data_loader
from networks.afnonet import AFNONet, PrecipNet
from utils.img_utils import vis_precip
import wandb
from utils.weighted_acc_rmse import weighted_acc, weighted_rmse, weighted_rmse_torch, unlog_tp_torch
from apex import optimizers
from utils.darcy_loss import LpLoss
import matplotlib.pyplot as plt
from collections import OrderedDict
import pickle
DECORRELATION_TIME = 36 # 9 days
import json
from ruamel.yaml import YAML
from ruamel.yaml.comments import CommentedMap as ruamelDict
class Trainer():
def count_parameters(self):
return sum(p.numel() for p in self.model.parameters() if p.requires_grad)
def __init__(self, params, world_rank):
self.params = params
self.world_rank = world_rank
self.device = torch.cuda.current_device() if torch.cuda.is_available() else 'cpu'
if params.log_to_wandb:
wandb.init(config=params, name=params.name, group=params.group, project=params.project, entity=params.entity)
logging.info('rank %d, begin data loader init'%world_rank)
self.train_data_loader, self.train_dataset, self.train_sampler = get_data_loader(params, params.train_data_path, dist.is_initialized(), train=True)
self.valid_data_loader, self.valid_dataset = get_data_loader(params, params.valid_data_path, dist.is_initialized(), train=False)
self.loss_obj = LpLoss()
logging.info('rank %d, data loader initialized'%world_rank)
params.crop_size_x = self.valid_dataset.crop_size_x
params.crop_size_y = self.valid_dataset.crop_size_y
params.img_shape_x = self.valid_dataset.img_shape_x
params.img_shape_y = self.valid_dataset.img_shape_y
# precip models
self.precip = True if "precip" in params else False
if self.precip:
if 'model_wind_path' not in params:
raise Exception("no backbone model weights specified")
# load a wind model
# the wind model has out channels = in channels
out_channels = np.array(params['in_channels'])
params['N_out_channels'] = len(out_channels)
if params.nettype_wind == 'afno':
self.model_wind = AFNONet(params).to(self.device)
else:
raise Exception("not implemented")
if dist.is_initialized():
self.model_wind = DistributedDataParallel(self.model_wind,
device_ids=[params.local_rank],
output_device=[params.local_rank],find_unused_parameters=True)
self.load_model_wind(params.model_wind_path)
self.switch_off_grad(self.model_wind) # no backprop through the wind model
# reset out_channels for precip models
if self.precip:
params['N_out_channels'] = len(params['out_channels'])
if params.nettype == 'afno':
self.model = AFNONet(params).to(self.device)
else:
raise Exception("not implemented")
# precip model
if self.precip:
self.model = PrecipNet(params, backbone=self.model).to(self.device)
if self.params.enable_nhwc:
# NHWC: Convert model to channels_last memory format
self.model = self.model.to(memory_format=torch.channels_last)
if params.log_to_wandb:
wandb.watch(self.model)
if params.optimizer_type == 'FusedAdam':
self.optimizer = optimizers.FusedAdam(self.model.parameters(), lr = params.lr)
else:
self.optimizer = torch.optim.Adam(self.model.parameters(), lr = params.lr)
if params.enable_amp == True:
self.gscaler = amp.GradScaler()
if dist.is_initialized():
self.model = DistributedDataParallel(self.model,
device_ids=[params.local_rank],
output_device=[params.local_rank],find_unused_parameters=True)
self.iters = 0
self.startEpoch = 0
if params.resuming:
logging.info("Loading checkpoint %s"%params.checkpoint_path)
self.restore_checkpoint(params.checkpoint_path)
if params.two_step_training:
if params.resuming == False and params.pretrained == True:
logging.info("Starting from pretrained one-step afno model at %s"%params.pretrained_ckpt_path)
self.restore_checkpoint(params.pretrained_ckpt_path)
self.iters = 0
self.startEpoch = 0
#logging.info("Pretrained checkpoint was trained for %d epochs"%self.startEpoch)
#logging.info("Adding %d epochs specified in config file for refining pretrained model"%self.params.max_epochs)
#self.params.max_epochs += self.startEpoch
self.epoch = self.startEpoch
if params.scheduler == 'ReduceLROnPlateau':
self.scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(self.optimizer, factor=0.2, patience=5, mode='min')
elif params.scheduler == 'CosineAnnealingLR':
self.scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(self.optimizer, T_max=params.max_epochs, last_epoch=self.startEpoch-1)
else:
self.scheduler = None
'''if params.log_to_screen:
logging.info(self.model)'''
if params.log_to_screen:
logging.info("Number of trainable model parameters: {}".format(self.count_parameters()))
def switch_off_grad(self, model):
for param in model.parameters():
param.requires_grad = False
def train(self):
if self.params.log_to_screen:
logging.info("Starting Training Loop...")
best_valid_loss = 1.e6
for epoch in range(self.startEpoch, self.params.max_epochs):
if dist.is_initialized():
self.train_sampler.set_epoch(epoch)
# self.valid_sampler.set_epoch(epoch)
start = time.time()
tr_time, data_time, train_logs = self.train_one_epoch()
valid_time, valid_logs = self.validate_one_epoch()
if epoch==self.params.max_epochs-1 and self.params.prediction_type == 'direct':
valid_weighted_rmse = self.validate_final()
if self.params.scheduler == 'ReduceLROnPlateau':
self.scheduler.step(valid_logs['valid_loss'])
elif self.params.scheduler == 'CosineAnnealingLR':
self.scheduler.step()
if self.epoch >= self.params.max_epochs:
logging.info("Terminating training after reaching params.max_epochs while LR scheduler is set to CosineAnnealingLR")
exit()
if self.params.log_to_wandb:
for pg in self.optimizer.param_groups:
lr = pg['lr']
wandb.log({'lr': lr})
if self.world_rank == 0:
if self.params.save_checkpoint:
#checkpoint at the end of every epoch
self.save_checkpoint(self.params.checkpoint_path)
if valid_logs['valid_loss'] <= best_valid_loss:
#logging.info('Val loss improved from {} to {}'.format(best_valid_loss, valid_logs['valid_loss']))
self.save_checkpoint(self.params.best_checkpoint_path)
best_valid_loss = valid_logs['valid_loss']
if self.params.log_to_screen:
logging.info('Time taken for epoch {} is {} sec'.format(epoch + 1, time.time()-start))
#logging.info('train data time={}, train step time={}, valid step time={}'.format(data_time, tr_time, valid_time))
logging.info('Train loss: {}. Valid loss: {}'.format(train_logs['loss'], valid_logs['valid_loss']))
# if epoch==self.params.max_epochs-1 and self.params.prediction_type == 'direct':
# logging.info('Final Valid RMSE: Z500- {}. T850- {}, 2m_T- {}'.format(valid_weighted_rmse[0], valid_weighted_rmse[1], valid_weighted_rmse[2]))
def train_one_epoch(self):
self.epoch += 1
tr_time = 0
data_time = 0
self.model.train()
for i, data in enumerate(self.train_data_loader, 0):
self.iters += 1
# adjust_LR(optimizer, params, iters)
data_start = time.time()
inp, tar = map(lambda x: x.to(self.device, dtype = torch.float), data)
if self.params.orography and self.params.two_step_training:
orog = inp[:,-2:-1]
if self.params.enable_nhwc:
inp = inp.to(memory_format=torch.channels_last)
tar = tar.to(memory_format=torch.channels_last)
if 'residual_field' in self.params.target:
tar -= inp[:, 0:tar.size()[1]]
data_time += time.time() - data_start
tr_start = time.time()
self.model.zero_grad()
if self.params.two_step_training:
with amp.autocast(self.params.enable_amp):
gen_step_one = self.model(inp).to(self.device, dtype = torch.float)
loss_step_one = self.loss_obj(gen_step_one, tar[:,0:self.params.N_out_channels])
if self.params.orography:
gen_step_two = self.model(torch.cat( (gen_step_one, orog), axis = 1) ).to(self.device, dtype = torch.float)
else:
gen_step_two = self.model(gen_step_one).to(self.device, dtype = torch.float)
loss_step_two = self.loss_obj(gen_step_two, tar[:,self.params.N_out_channels:2*self.params.N_out_channels])
loss = loss_step_one + loss_step_two
else:
with amp.autocast(self.params.enable_amp):
if self.precip: # use a wind model to predict 17(+n) channels at t+dt
with torch.no_grad():
inp = self.model_wind(inp).to(self.device, dtype = torch.float)
gen = self.model(inp.detach()).to(self.device, dtype = torch.float)
else:
gen = self.model(inp).to(self.device, dtype = torch.float)
loss = self.loss_obj(gen, tar)
if self.params.enable_amp:
self.gscaler.scale(loss).backward()
self.gscaler.step(self.optimizer)
else:
loss.backward()
self.optimizer.step()
if self.params.enable_amp:
self.gscaler.update()
tr_time += time.time() - tr_start
try:
logs = {'loss': loss, 'loss_step_one': loss_step_one, 'loss_step_two': loss_step_two}
except:
logs = {'loss': loss}
if dist.is_initialized():
for key in sorted(logs.keys()):
dist.all_reduce(logs[key].detach())
logs[key] = float(logs[key]/dist.get_world_size())
if self.params.log_to_wandb:
wandb.log(logs, step=self.epoch)
return tr_time, data_time, logs
def validate_one_epoch(self):
self.model.eval()
n_valid_batches = 20 #do validation on first 20 images, just for LR scheduler
if self.params.normalization == 'minmax':
raise Exception("minmax normalization not supported")
elif self.params.normalization == 'zscore':
mult = torch.as_tensor(np.load(self.params.global_stds_path)[0, self.params.out_channels, 0, 0]).to(self.device)
valid_buff = torch.zeros((3), dtype=torch.float32, device=self.device)
valid_loss = valid_buff[0].view(-1)
valid_l1 = valid_buff[1].view(-1)
valid_steps = valid_buff[2].view(-1)
valid_weighted_rmse = torch.zeros((self.params.N_out_channels), dtype=torch.float32, device=self.device)
valid_weighted_acc = torch.zeros((self.params.N_out_channels), dtype=torch.float32, device=self.device)
valid_start = time.time()
sample_idx = np.random.randint(len(self.valid_data_loader))
with torch.no_grad():
for i, data in enumerate(self.valid_data_loader, 0):
if (not self.precip) and i>=n_valid_batches:
break
inp, tar = map(lambda x: x.to(self.device, dtype = torch.float), data)
if self.params.orography and self.params.two_step_training:
orog = inp[:,-2:-1]
if self.params.two_step_training:
gen_step_one = self.model(inp).to(self.device, dtype = torch.float)
loss_step_one = self.loss_obj(gen_step_one, tar[:,0:self.params.N_out_channels])
if self.params.orography:
gen_step_two = self.model(torch.cat( (gen_step_one, orog), axis = 1) ).to(self.device, dtype = torch.float)
else:
gen_step_two = self.model(gen_step_one).to(self.device, dtype = torch.float)
loss_step_two = self.loss_obj(gen_step_two, tar[:,self.params.N_out_channels:2*self.params.N_out_channels])
valid_loss += loss_step_one + loss_step_two
valid_l1 += nn.functional.l1_loss(gen_step_one, tar[:,0:self.params.N_out_channels])
else:
if self.precip:
with torch.no_grad():
inp = self.model_wind(inp).to(self.device, dtype = torch.float)
gen = self.model(inp.detach())
else:
gen = self.model(inp).to(self.device, dtype = torch.float)
valid_loss += self.loss_obj(gen, tar)
valid_l1 += nn.functional.l1_loss(gen, tar)
valid_steps += 1.
# save fields for vis before log norm
if (i == sample_idx) and (self.precip and self.params.log_to_wandb):
fields = [gen[0,0].detach().cpu().numpy(), tar[0,0].detach().cpu().numpy()]
if self.precip:
gen = unlog_tp_torch(gen, self.params.precip_eps)
tar = unlog_tp_torch(tar, self.params.precip_eps)
#direct prediction weighted rmse
if self.params.two_step_training:
if 'residual_field' in self.params.target:
valid_weighted_rmse += weighted_rmse_torch((gen_step_one + inp), (tar[:,0:self.params.N_out_channels] + inp))
else:
valid_weighted_rmse += weighted_rmse_torch(gen_step_one, tar[:,0:self.params.N_out_channels])
else:
if 'residual_field' in self.params.target:
valid_weighted_rmse += weighted_rmse_torch((gen + inp), (tar + inp))
else:
valid_weighted_rmse += weighted_rmse_torch(gen, tar)
if not self.precip:
try:
os.mkdir(params['experiment_dir'] + "/" + str(i))
except:
pass
#save first channel of image
if self.params.two_step_training:
save_image(torch.cat((gen_step_one[0,0], torch.zeros((self.valid_dataset.img_shape_x, 4)).to(self.device, dtype = torch.float), tar[0,0]), axis = 1), params['experiment_dir'] + "/" + str(i) + "/" + str(self.epoch) + ".png")
else:
save_image(torch.cat((gen[0,0], torch.zeros((self.valid_dataset.img_shape_x, 4)).to(self.device, dtype = torch.float), tar[0,0]), axis = 1), params['experiment_dir'] + "/" + str(i) + "/" + str(self.epoch) + ".png")
if dist.is_initialized():
dist.all_reduce(valid_buff)
dist.all_reduce(valid_weighted_rmse)
# divide by number of steps
valid_buff[0:2] = valid_buff[0:2] / valid_buff[2]
valid_weighted_rmse = valid_weighted_rmse / valid_buff[2]
if not self.precip:
valid_weighted_rmse *= mult
# download buffers
valid_buff_cpu = valid_buff.detach().cpu().numpy()
valid_weighted_rmse_cpu = valid_weighted_rmse.detach().cpu().numpy()
valid_time = time.time() - valid_start
valid_weighted_rmse = mult*torch.mean(valid_weighted_rmse, axis = 0)
if self.precip:
logs = {'valid_l1': valid_buff_cpu[1], 'valid_loss': valid_buff_cpu[0], 'valid_rmse_tp': valid_weighted_rmse_cpu[0]}
else:
try:
logs = {'valid_l1': valid_buff_cpu[1], 'valid_loss': valid_buff_cpu[0], 'valid_rmse_u10': valid_weighted_rmse_cpu[0], 'valid_rmse_v10': valid_weighted_rmse_cpu[1]}
except:
logs = {'valid_l1': valid_buff_cpu[1], 'valid_loss': valid_buff_cpu[0], 'valid_rmse_u10': valid_weighted_rmse_cpu[0]}#, 'valid_rmse_v10': valid_weighted_rmse[1]}
if self.params.log_to_wandb:
if self.precip:
fig = vis_precip(fields)
logs['vis'] = wandb.Image(fig)
plt.close(fig)
wandb.log(logs, step=self.epoch)
return valid_time, logs
def validate_final(self):
self.model.eval()
n_valid_batches = int(self.valid_dataset.n_patches_total/self.valid_dataset.n_patches) #validate on whole dataset
valid_weighted_rmse = torch.zeros(n_valid_batches, self.params.N_out_channels)
if self.params.normalization == 'minmax':
raise Exception("minmax normalization not supported")
elif self.params.normalization == 'zscore':
mult = torch.as_tensor(np.load(self.params.global_stds_path)[0, self.params.out_channels, 0, 0]).to(self.device)
with torch.no_grad():
for i, data in enumerate(self.valid_data_loader):
if i>100:
break
inp, tar = map(lambda x: x.to(self.device, dtype = torch.float), data)
if self.params.orography and self.params.two_step_training:
orog = inp[:,-2:-1]
if 'residual_field' in self.params.target:
tar -= inp[:, 0:tar.size()[1]]
if self.params.two_step_training:
gen_step_one = self.model(inp).to(self.device, dtype = torch.float)
loss_step_one = self.loss_obj(gen_step_one, tar[:,0:self.params.N_out_channels])
if self.params.orography:
gen_step_two = self.model(torch.cat( (gen_step_one, orog), axis = 1) ).to(self.device, dtype = torch.float)
else:
gen_step_two = self.model(gen_step_one).to(self.device, dtype = torch.float)
loss_step_two = self.loss_obj(gen_step_two, tar[:,self.params.N_out_channels:2*self.params.N_out_channels])
valid_loss[i] = loss_step_one + loss_step_two
valid_l1[i] = nn.functional.l1_loss(gen_step_one, tar[:,0:self.params.N_out_channels])
else:
gen = self.model(inp)
valid_loss[i] += self.loss_obj(gen, tar)
valid_l1[i] += nn.functional.l1_loss(gen, tar)
if self.params.two_step_training:
for c in range(self.params.N_out_channels):
if 'residual_field' in self.params.target:
valid_weighted_rmse[i, c] = weighted_rmse_torch((gen_step_one[0,c] + inp[0,c]), (tar[0,c]+inp[0,c]), self.device)
else:
valid_weighted_rmse[i, c] = weighted_rmse_torch(gen_step_one[0,c], tar[0,c], self.device)
else:
for c in range(self.params.N_out_channels):
if 'residual_field' in self.params.target:
valid_weighted_rmse[i, c] = weighted_rmse_torch((gen[0,c] + inp[0,c]), (tar[0,c]+inp[0,c]), self.device)
else:
valid_weighted_rmse[i, c] = weighted_rmse_torch(gen[0,c], tar[0,c], self.device)
#un-normalize
valid_weighted_rmse = mult*torch.mean(valid_weighted_rmse[0:100], axis = 0).to(self.device)
return valid_weighted_rmse
def load_model_wind(self, model_path):
if self.params.log_to_screen:
logging.info('Loading the wind model weights from {}'.format(model_path))
checkpoint = torch.load(model_path, map_location='cuda:{}'.format(self.params.local_rank))
if dist.is_initialized():
self.model_wind.load_state_dict(checkpoint['model_state'])
else:
new_model_state = OrderedDict()
model_key = 'model_state' if 'model_state' in checkpoint else 'state_dict'
for key in checkpoint[model_key].keys():
if 'module.' in key: # model was stored using ddp which prepends module
name = str(key[7:])
new_model_state[name] = checkpoint[model_key][key]
else:
new_model_state[key] = checkpoint[model_key][key]
self.model_wind.load_state_dict(new_model_state)
self.model_wind.eval()
def save_checkpoint(self, checkpoint_path, model=None):
""" We intentionally require a checkpoint_dir to be passed
in order to allow Ray Tune to use this function """
if not model:
model = self.model
torch.save({'iters': self.iters, 'epoch': self.epoch, 'model_state': model.state_dict(),
'optimizer_state_dict': self.optimizer.state_dict()}, checkpoint_path)
def restore_checkpoint(self, checkpoint_path):
""" We intentionally require a checkpoint_dir to be passed
in order to allow Ray Tune to use this function """
checkpoint = torch.load(checkpoint_path, map_location='cuda:{}'.format(self.params.local_rank))
try:
self.model.load_state_dict(checkpoint['model_state'])
except:
new_state_dict = OrderedDict()
for key, val in checkpoint['model_state'].items():
name = key[7:]
new_state_dict[name] = val
self.model.load_state_dict(new_state_dict)
self.iters = checkpoint['iters']
self.startEpoch = checkpoint['epoch']
if self.params.resuming: #restore checkpoint is used for finetuning as well as resuming. If finetuning (i.e., not resuming), restore checkpoint does not load optimizer state, instead uses config specified lr.
self.optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--run_num", default='00', type=str)
parser.add_argument("--yaml_config", default='./config/AFNO.yaml', type=str)
parser.add_argument("--config", default='default', type=str)
parser.add_argument("--enable_amp", action='store_true')
parser.add_argument("--epsilon_factor", default = 0, type = float)
args = parser.parse_args()
params = YParams(os.path.abspath(args.yaml_config), args.config)
params['epsilon_factor'] = args.epsilon_factor
params['world_size'] = 1
if 'WORLD_SIZE' in os.environ:
params['world_size'] = int(os.environ['WORLD_SIZE'])
world_rank = 0
local_rank = 0
if params['world_size'] > 1:
dist.init_process_group(backend='nccl',
init_method='env://')
local_rank = int(os.environ["LOCAL_RANK"])
args.gpu = local_rank
world_rank = dist.get_rank()
params['global_batch_size'] = params.batch_size
params['batch_size'] = int(params.batch_size//params['world_size'])
torch.cuda.set_device(local_rank)
torch.backends.cudnn.benchmark = True
# Set up directory
expDir = os.path.join(params.exp_dir, args.config, str(args.run_num))
if world_rank==0:
if not os.path.isdir(expDir):
os.makedirs(expDir)
os.makedirs(os.path.join(expDir, 'training_checkpoints/'))
params['experiment_dir'] = os.path.abspath(expDir)
params['checkpoint_path'] = os.path.join(expDir, 'training_checkpoints/ckpt.tar')
params['best_checkpoint_path'] = os.path.join(expDir, 'training_checkpoints/best_ckpt.tar')
# Do not comment this line out please:
args.resuming = True if os.path.isfile(params.checkpoint_path) else False
params['resuming'] = args.resuming
params['local_rank'] = local_rank
params['enable_amp'] = args.enable_amp
# this will be the wandb name
# params['name'] = args.config + '_' + str(args.run_num)
# params['group'] = "era5_wind" + args.config
params['name'] = args.config + '_' + str(args.run_num)
params['group'] = "era5_precip" + args.config
params['project'] = "ERA5_precip"
params['entity'] = "flowgan"
if world_rank==0:
logging_utils.log_to_file(logger_name=None, log_filename=os.path.join(expDir, 'out.log'))
logging_utils.log_versions()
params.log()
params['log_to_wandb'] = (world_rank==0) and params['log_to_wandb']
params['log_to_screen'] = (world_rank==0) and params['log_to_screen']
params['in_channels'] = np.array(params['in_channels'])
params['out_channels'] = np.array(params['out_channels'])
if params.orography:
params['N_in_channels'] = len(params['in_channels']) +1
else:
params['N_in_channels'] = len(params['in_channels'])
params['N_out_channels'] = len(params['out_channels'])
if world_rank == 0:
hparams = ruamelDict()
yaml = YAML()
for key, value in params.params.items():
hparams[str(key)] = str(value)
with open(os.path.join(expDir, 'hyperparams.yaml'), 'w') as hpfile:
yaml.dump(hparams, hpfile )
trainer = Trainer(params, world_rank)
trainer.train()
logging.info('DONE ---- rank %d'%world_rank)