diff --git a/dev/.documenter-siteinfo.json b/dev/.documenter-siteinfo.json
index 4076b84..f46fc9d 100644
--- a/dev/.documenter-siteinfo.json
+++ b/dev/.documenter-siteinfo.json
@@ -1 +1 @@
-{"documenter":{"julia_version":"1.10.4","generation_timestamp":"2024-08-12T02:29:09","documenter_version":"1.5.0"}}
\ No newline at end of file
+{"documenter":{"julia_version":"1.10.4","generation_timestamp":"2024-08-12T20:54:51","documenter_version":"1.5.0"}}
\ No newline at end of file
diff --git a/dev/abstractmcmc_demo.svg b/dev/abstractmcmc_demo.svg
index 57e9245..40649ce 100644
--- a/dev/abstractmcmc_demo.svg
+++ b/dev/abstractmcmc_demo.svg
@@ -1,48 +1,46 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/dev/general/index.html b/dev/general/index.html
index cf21095..89a341e 100644
--- a/dev/general/index.html
+++ b/dev/general/index.html
@@ -43,8 +43,8 @@
Iterations = 1:1:10000
Number of chains = 1
Samples per chain = 10000
-Wall duration = 4.19 seconds
-Compute duration = 4.19 seconds
+Wall duration = 4.34 seconds
+Compute duration = 4.34 seconds
parameters = s, m
internals = lp
@@ -52,14 +52,63 @@
parameters mean std mcse ess_bulk ess_tail rhat ⋯
Symbol Float64 Float64 Float64 Float64 Float64 Float64 ⋯
- s 1.5240 3.5438 0.0400 5837.6548 4743.5614 1.0002 ⋯
- m -0.0051 1.2245 0.0129 8940.8834 5833.9653 0.9999 ⋯
+ s 1.5399 1.4716 0.0245 5546.7713 4499.4552 1.0001 ⋯
+ m -0.0006 1.2366 0.0135 8507.9126 5682.3507 1.0006 ⋯
1 column omitted
Quantiles
parameters 2.5% 25.0% 50.0% 75.0% 97.5%
Symbol Float64 Float64 Float64 Float64 Float64
- s 0.4194 0.7580 1.1085 1.7324 4.8389
- m -2.5320 -0.7309 -0.0006 0.7249 2.4190
-
For drawing samples using the algorithms provided by SliceSampling
, the user only needs to call:
sample([rng,] model, slice, N; initial_params)
slice::AbstractSliceSampling
: Any slice sampling algorithm provided by SliceSampling
.model
: A model implementing the LogDensityProblems
interface.N
: The number of samples
The output is a SliceSampling.Transition
object, which contains the following:
struct Transition
Struct containing the results of the transition.
Fields
params
: Samples generated by the transition.lp::Real
: Log-target density of the samples.info::NamedTuple
: Named tuple containing information about the transition.
sourceFor the keyword arguments, SliceSampling
allows:
initial_params
: The intial state of the Markov chain (default: nothing
).
If initial_params
is nothing
, the following function can be implemented to provide an initialization:
initial_sample(rng, model)
Return the initial sample for the model
using the random number generator rng
.
Arguments
rng::Random.AbstractRNG
: Random number generator.model
: The target LogDensityProblem
.
sourceFor more fined-grained control, the user can call AbstractMCMC.step
. That is, the chain can be initialized by calling:
transition, state = AbstractMCMC.steps([rng,] model, slice; initial_params)
and then each MCMC transition on state
can be performed by calling:
transition, state = AbstractMCMC.steps([rng,] model, slice, state)
For more details, refer to the documentation of AbstractMCMC
.
This document was generated with Documenter.jl version 1.5.0 on Monday 12 August 2024. Using Julia version 1.10.4.